HKDSE Mathematics 2022 Core Paper1-Suggested Solution

Section A(1)

1. $\frac{\left(a^{3} b^{-2}\right)^{4}}{a^{-5} b^{6}}$
$=\frac{a^{12} b^{-8}}{a^{-5} b^{6}}$
$=\frac{a^{12+5}}{b^{6-(-8)}}$
$=\frac{\boldsymbol{a}^{17}}{\boldsymbol{b}^{14}}$
2. $\left\{\begin{array}{l}x+y=456 \\ 7 x=y\end{array}\right.$
$\therefore x+7 x=456$
Solving, we have $\boldsymbol{x}=\mathbf{5 7}$.
3. $\frac{3}{k-9}+\frac{2}{5 k+6}$

$$
\begin{align*}
& =\frac{3(5 k+6)+2(k-9)}{(k-9)(5 k+6)} \\
& =\frac{15 k+18+2 k-18}{(k-9)(5 k+6)} \\
& =\frac{\mathbf{1 7} \boldsymbol{k}}{(\boldsymbol{k}-\mathbf{9})(5 \boldsymbol{k}+\mathbf{6})} \tag{3}
\end{align*}
$$

4. (a) $9 c^{2}-6 c+1=(3 c-1)^{2}$
(b) $(4 a+d)^{2}-9 c^{2}+6 c+1$

$$
\begin{aligned}
& =(4 c+d)^{2}-\left(9 c^{2}-6 c+1\right) \\
& =(4 c+d)^{2}-(3 c-1)^{2} \\
& =(4 c+d+3 c-1)(4 c+d-3 c+1) \\
& =(7 c+\boldsymbol{d}-\mathbf{1})(\boldsymbol{c}+\boldsymbol{d}+\mathbf{1})
\end{aligned}
$$

5. Let $\$ x$ be the cost of the fan.

$$
\begin{aligned}
x \times 26 \% & =78 \\
x & =300
\end{aligned}
$$

Let $\$ y$ be the marked price of the fan.
$y \times 70 \%=300+78$

$$
y=540
$$

\therefore The marked price of the fan is $\$ 540$.

HKDSE Mathematics 2022 Core Paper1-Suggested Solution

6. (a) $-2(3 x+2)>x+10$

$$
\begin{gathered}
-6 x-4>x+10 \\
-6 x-x>10+4 \\
x<-2
\end{gathered}
$$

Also, $\quad 2 x \leq 8$

$$
x \leq 4
$$

\therefore We have $x<-2$ or $x \leq-4$
\therefore The solution is $\boldsymbol{x}<\mathbf{- 2}$
(b) -3
7. (a) $S^{\prime}(5,12)$.

$$
T^{\prime}(-3,7)
$$

(b) $\quad m_{S^{\prime} T^{\prime}}=\frac{12-7}{5-(-3)}$

$$
=\frac{5}{8}
$$

8. (a) $\angle A C B=\angle C A D$
(alt. $\angle \mathrm{s}, A D / / B C$)
$\angle C A D=\angle A D E$
(alt. $\angle \mathrm{s}, A C / / E D$)
$\angle A C B=\angle A D E$
$\angle A B C=\angle A E D$
(given)
$A B=A E$
$\triangle A B C \cong \triangle A E D$
(given)
(AAS)
(b) $\angle B A C=\angle D A E$

$$
=87^{\circ}
$$

$\angle A C B=180^{\circ}-\angle B A C-\angle A B C$
$=180^{\circ}-87^{\circ}-39^{\circ}$
$=54^{\circ}$
$\angle C A D=\angle A C B$

$$
=54^{\circ}
$$

Note that $A C=A D \Rightarrow A C D=\angle A D C$

$$
\begin{aligned}
\angle A C D & =\frac{180^{\circ}-\angle C A D}{2} \\
& =\frac{180^{\circ}-54^{\circ}}{2} \\
& =63^{\circ}
\end{aligned}
$$

HKDSE Mathematics 2022 Core Paper1-Suggested Solution

9. (a) 12
(b) Note that $a=3$ and $b=5$.

Mean
$=\frac{12(3)+17(9)+22(5)+27(3)}{20}$
$=19$ minutes
(c) The required probability
$=\frac{12}{20}$
$=\frac{3}{5}$
Section A(2)
10. (a) Let $f(x)=a x^{2}+b$ where a and b are non-zero constant.
$\therefore\left\{\begin{array}{l}16 a+4 b=96 \\ 25 a-5 b=15\end{array}\right.$
Solving, we have $a=3$ and $\boldsymbol{b}=12$.
$\therefore f(x)=3 x^{2}+12 x$.
(b) $8\left(3 x^{2}+12 x\right)=0$
$x=0$ or -4
$\therefore x$-intercept are 0 and -12.
(c) $\because 3 x^{2}+12 x-k=0$ has two distinct real roots

$$
\begin{align*}
\therefore \Delta=12^{2}-4(3)(-k) & >0 \\
144+12 k & >0 \\
k & >-\mathbf{1 2} \tag{2}
\end{align*}
$$

11. (a) $36-(20+a)=14$

$$
a=2
$$

$$
30+b=31
$$

$$
\begin{equation*}
b=1 \tag{3}
\end{equation*}
$$

(b) (i) The original mode $=36$
\because The frequency of ages apart from age 36 is less than 3 ,
\therefore The new mode $=36$
Thus, there is no change in the mode of the distribution.

HKDSE Mathematics 2022 Core Paper1-Suggested Solution

(ii) There are two cases.

Case 1: The player of age 17 leaves the football team.
The standard deviation of the distribution $=7.162537194$
Case 2: The player of age 43 leaves the football team.
The standard deviation of the distribution $=7.132307207$
\therefore The greatest possible standard deviation of the distribution is $\mathbf{7 . 1 6}$.
12. (a) Coordinates of $G=\left(\frac{154}{2}, \frac{128}{2}\right)$

$$
=(77,64)
$$

$G H=\sqrt{(77-65)^{2}+(64-48)^{2}}$

$$
=20
$$

(b) (i) $G H \perp G P$
(ii) The radius of $C=\sqrt{77^{2}+64^{2}-224}$

$$
=99
$$

The required perimeter

$$
\begin{aligned}
& =20+99+\sqrt{20^{2}+99^{2}} \\
& =\mathbf{2 2 0}
\end{aligned}
$$

13. (a) Volume of the smaller sphere : Volume of the larger sphere $=8: 27$.

The volume of the smaller sphere
$=\frac{4}{3} \pi(9)^{3}\left(\frac{8}{27}\right)$
$=288 \pi \mathrm{~cm}^{3}$
(b) $288 \pi+\frac{4}{3} \pi\left(9^{3}\right)=\frac{1}{3} \pi\left(6^{2}\right)(10)+V_{B}$

$$
V_{B}=1140 \pi \mathrm{~cm}^{3}
$$

$\frac{V_{B}}{V_{A}}=\frac{1140 \pi}{120 \pi}=\frac{19}{2}$
$\left(\frac{r_{B}}{r_{A}}\right)^{3}=\left(\frac{12}{6}\right)^{3}=8$
$\frac{V_{B}}{V_{A}} \neq\left(\frac{r_{B}}{r_{A}}\right)^{3}$
So, A and B are not similar.
Thus, the claim is not correct.

HKDSE Mathematics 2022 Core Paper1-Suggested Solution

14. (a) Let $p(x)=(c x+d)\left(x^{2}-2 x+3\right)+x+13$, where c and d are constants.
$p(x)=c x^{3}+(d-2 c) x^{2}+(3 c-2 d+1) x+(3 d+13)$.
By comparing coefficients, we have $c=2$ and $3 d+13=-20$.
Solving, we have $c=2$ and $d=-11$.
$\therefore p(x)=2 x^{3}-15 x^{2}+29 x-20$.
$\therefore a=-15$ and $b=29$.
$p(5)$
$=2(5)^{3}-15(5)^{2}+29(5)-20$
$=0$
$\therefore x-5$ is a factor of $p(x)$.
(b)

$$
p(x)=0
$$

$(x-5)\left(2 x^{2}-5 x+4\right)=0$
$x=5$ or $2 x^{2}-5 x+4=0$
$\Delta=(-5)^{2}-4(2)(4)$
$=-7$
<0
$\therefore 2 x^{2}-5 x+4=0$ has no irrational roots.
Also note that 5 is not an irrational number.
$\therefore p(x)=0$ has no irrational roots.
\therefore The claim is disagreed.
15. (a) The required probability

$$
\begin{aligned}
& =\frac{C_{2}^{10} C_{2}^{12}}{C_{4}^{12}} \\
& =\frac{\mathbf{5 4}}{\mathbf{1 3 3}}
\end{aligned}
$$

(b) The required probability

$$
\begin{aligned}
& =1-\frac{54}{133} \\
& =\frac{79}{133}
\end{aligned}
$$

HKDSE Mathematics 2022 Core Paper1-Suggested Solution

16. (a) $g(x)$
$=3 x^{2}+12 k x+16 k^{2}+8$
$=3\left(x^{2}+4 k x\right)+16 k^{2}+8$
$=3\left(x^{2}+4 k x+4 k^{2}\right)+4 k^{2}+8$
$=3(x+2 k)^{2}+4 k^{2}+8$
\therefore The coordinates of the vertex are $\left(-2 k, 4 k^{2}+8\right)$.
(b) Note that $B\left(2 k, 8 k^{2}+16\right)$.

Also, $A M$: $M B=1: 3$
Coordinates of M
$=\left(\frac{3(-2 k)+(2 k)}{1+3}, \frac{3\left(4 k^{2}+8\right)+\left(8 k^{2}+16\right)}{1+3}\right)$
$=\left(-k, 5 k^{2}+10\right)$
17. (a) Note that $\alpha+\beta=-c$ and $\alpha \beta=-9$

$$
\begin{align*}
& \alpha^{2}+\beta^{2} \\
= & (\alpha+\beta)^{2}-2 \alpha \beta \\
= & (-c)^{2}-2(-9) \\
= & \boldsymbol{c}^{2}+\mathbf{1 8} \tag{3}
\end{align*}
$$

(b) $\alpha^{2}+\beta^{2}-c^{2}=85-\left(\alpha^{2}+\beta^{2}\right)$
$c^{2}+18-c^{2}=85-\left(c^{2}+18\right)$

$$
c^{2}=49
$$

Note that the 1st term $=49$ and the common difference $=18$
$\frac{n}{2}(2(49)+18(n-1))>2 \times 10^{6}$
$9 n^{2}+40 n-2 \times 10^{6}>0$
$n<\frac{-40-\sqrt{40^{2}-4(9)\left(-2 \times 10^{6}\right)}}{2(9)}$ or $n>\frac{-40+\sqrt{40^{2}-4(9)\left(-2 \times 10^{6}\right)}}{2(9)}$
$n<-473.6319808$ or $n>469.1875364$
\therefore The least value of \boldsymbol{n} is 470 .
18. (a) (i) $Q R^{2}=P Q^{2}+P R^{2}-2(P Q)(P R) \cos \angle Q P R$

$$
\begin{align*}
Q R^{2} & =30^{2}+25^{2}-2(30)(25) \cos 95^{\circ} \\
Q R & =40.69070673 \\
\boldsymbol{Q R} & =\mathbf{4 0 . 7} \mathbf{~ c m} \tag{2}
\end{align*}
$$

HKDSE Mathematics 2022 Core Paper1-Suggested Solution

(ii) $\frac{\sin \angle P Q R}{P R}=\frac{\sin \angle Q P R}{Q R}$

$$
\begin{aligned}
& \frac{\sin \angle P Q R}{25}=\frac{\sin 95^{\circ}}{40.69070673} \\
& \angle P Q R=37.73809375^{\circ} \text { or } \angle P Q R=142.261906^{\circ} \text { (rejected) } \\
& \therefore \angle \boldsymbol{P Q R}=\mathbf{3 7 . 7 ^ { \circ }}
\end{aligned}
$$

(b) $P M^{2}=P Q^{2}+Q M^{2}-2(P Q)(Q M) \cos \angle P Q R$
$P M^{2}=30^{2}+\left(\frac{40.69070673}{2}\right)^{2}-2(30)\left(\frac{40.69070673}{2}\right) \cos 37.73809375^{\circ}$
$P M=18.66993831 \mathrm{~cm}$
Let S and N be the projections of R and M on the horizontal ground respectively.

$$
\begin{aligned}
M N & =\frac{1}{2} R S \\
& =\frac{1}{2} P R \sin 70^{\circ} \\
& =\frac{1}{2}(25) \sin 70^{\circ} \\
& =11.74615776 \mathrm{~cm}
\end{aligned}
$$

Note that the angle between $P M$ and the horizontal ground is $\angle M P N$.
$\sin \angle M P N=\frac{M N}{P M}$
$\sin \angle M P N=\frac{11.74615776}{18.66993831}$

$$
\begin{aligned}
\angle M P N & =38.98730493^{\circ} \\
& <40^{\circ}
\end{aligned}
$$

\therefore The claim is not correct.
19. (a) $m_{A G}$

$$
\begin{aligned}
& =\frac{112-12}{83-158} \\
& =-\frac{4}{3}
\end{aligned}
$$

The required equation is

$$
\begin{align*}
y-12 & =-\frac{4}{3}(x-158) \\
4 \boldsymbol{x}+\mathbf{3 y - 6 6 8} & =\mathbf{0} \tag{2}
\end{align*}
$$

HKDSE Mathematics 2022 Core Paper1-Suggested Solution

(b) Radius of C is 75 .
$\because 83+75=158$
$\therefore A P$ is vertical or $A Q$ is vertical.
$\therefore P(158,112)$ or $Q(158,112)$
$\because \triangle A G P \cong \triangle A G Q$ and $A G \perp P Q$.
$\therefore m_{P Q}=-\frac{1}{m_{A G}}=\frac{3}{4}$.
The equation of $P Q$ is $y-112=\frac{3}{4}(x-158)$.
$\left\{\begin{array}{l}y-112=\frac{3}{4}(x-158) \\ 4 x+3 y-668=0\end{array}\right.$
Solving, we have $x=110$ and $y=76$.
Thus, the coordinates of the point of intersection of $A G$ and $P Q$ are $(\mathbf{1 1 0}, \mathbf{7 6})$
(c) Let B and r be the centre and the radius of the inscribed circle of
$\triangle A P Q$ respectively.
Note that $A P=A Q$ and B lies on $A G$.
The x-coordinate of B
$=158-r$
The y-coordinate of B
$=-\frac{4}{3}(158-r)+\frac{668}{3}$
$=\frac{4 r}{3}+12$
$\therefore B\left(158-r, \frac{4 r}{3}+12\right)$
The distance between and the point of intersection of $A G$ and $P Q$ is r.

$$
\begin{array}{r}
((158-r)-110)^{2}+\left(\left(\frac{4}{3}+12\right)-76 r\right)^{2}=r^{2} \\
\frac{16}{9} r^{2}-\frac{800}{3} r+6400=0 \\
r^{2}-150 r+3600=0 \\
r=30 \text { or } r=120 \text { (rejected) }
\end{array}
$$

$\therefore \mathrm{B}(128,52)$.
\therefore The required equation is $(\boldsymbol{x}-\mathbf{1 2 8})^{2}+(\boldsymbol{y}-\mathbf{5 2})^{2}=\mathbf{3 0}^{2}$.

HKDSE Mathematics 2022 Core Paper1-Suggested Solution

(d) Note that $\angle A P G=\angle A Q G=90^{\circ}$ and $\angle A P G+\angle A Q G=180^{\circ}$.
$\therefore A P G Q$ is a cyclic quadrilateral
and $A G$ is a diameter of the circumcircle of $\triangle A P Q$.
The radius of the circumcircle of $\triangle A P Q$
$=\frac{1}{2} \sqrt{(83-158)^{2}+(112-12)^{2}}$
$=\frac{125}{2}$
By (c), the radius of the inscribed circle of $\triangle A P Q$ is 30 .
Area of the inscribed circle : Area of the circumcircle of $\triangle A P Q$
$=30^{2}:\left(\frac{125}{2}\right)^{2}$
$=144: 625$
$\neq 1$: 4
\therefore The claim is disagreed.

