Section A(1) [35]		
1.	$(a^3b^{-2})^4$	
	$a^{-5}b^{6}$	
	$=\frac{a^{12}b^{-5}}{a^{-5}b^{6}}$	
	a ¹²⁺⁵	
	$=\frac{1}{b^{6-(-8)}}$	
	$=\frac{a^{17}}{1}$	[2]
	<i>b</i> ¹⁴	[3]
2.	$\begin{cases} x + y = 456 \end{cases}$	
	$\left(7x=y\right)$	
	$\therefore \frac{x+7x=456}{x+7x=456}$	
	Solving, we have $x = 57$.	[3]
3.	$\frac{3}{3} + \frac{2}{3}$	
	k - 9 + 5k + 6	
	$=\frac{3(3k+0)+2(k-9)}{(k-9)(5k+6)}$	
	15k + 18 + 2k - 18	
	$= \frac{(k-9)(5k+6)}{(k-9)(5k+6)}$	
	$=\frac{17k}{(k-2)(5k+3)}$	[2]
	(k-9)(5k+6)	[3]
4.	(a) $9c^2 - 6c + 1 = (3c - 1)^2$	[1]
	(b) $(4a+d)^2 - 9c^2 + 6c + 1$	
	$= (4c+d)^2 - (9c^2 - 6c + 1)$	
	$= (4c+d)^2 - (3c-1)^2$	
	= (4c + d + 3c - 1)(4c + d - 3c + 1)	
	= (7c + d - 1)(c + d + 1)	[3]
5.	Let x be the cost of the fan.	
	$x \times 26\% = 78$	
	x = 300	
	Let \$y be the marked price of the fan.	
	$y \times 70\% = 300 + 78$	
	y = 540	
	\therefore The marked price of the fan is \$540.	[4]

MATHCONCEPT education © copyright

DSE.Math.Core.2022.Paper.1_Suggested Solution_1/9

6.	(a)	-2(3x+2) > x + 10		
		-6x - 4 > x + 10		
		-6x - x > 10 + 4		
		x < -2		
		Also, $2x \le 8$		
		$x \le 4$		
		\therefore We have $x < -2$ or $x \le -4$		
		\therefore The solution is $x < -2$		[3]
	(b)	-3		[1]
7.	(a)	<i>S</i> ′(5, 12).		
		T'(-3,7).		[2]
	(b)	$m_{S'T'} = \frac{12-7}{5}$		
		5 - (-3)		
		$=\frac{5}{8}$		[2]
8.	(a)	$\angle ACB = \angle CAD$	(alt. \angle s, <i>AD</i> // <i>BC</i>)	
		$\angle CAD = \angle ADE$	(alt. \angle s, $AC / / ED$)	
		$\angle ACB = \angle ADE$		
		$\angle ABC = \angle AED$	(given)	
		AB = AE	(given)	
		$\Delta ABC \cong \Delta AED$	(AAS)	[2]
	(b)	$\angle BAC = \angle DAE$		
		= 87°		
		$\angle ACB = 180^\circ - \angle BAC - \angle ABC$		
		$= 180^{\circ} - 87^{\circ} - 39^{\circ}$		
		= 54°		
		$\angle CAD = \angle ACB$		
		= 54°		
		Note that $AC = AD \implies ACD = \angle ADC$		
		$\angle ACD = \frac{180^\circ - \angle CAD}{2}$		
		$=\frac{180^{\circ}-54^{\circ}}{54^{\circ}}$		
		$= 63^{\circ}$		[3]

MATHCONCEPT education © copyright

DSE.Math.Core.2022.Paper.1_Suggested Solution_2/9

9.	(a)	12	[1]
	(b)	Note that $a = 3$ and $b = 5$.	
		Mean	
		$=\frac{12(3)+17(9)+22(5)+27(3)}{20}$	
		=19 minutes	[2]
	(c)	The required probability	
	(C)	12	
		$=\frac{1}{20}$	
		$=\frac{3}{5}$	[2]
Sec	tion	A (2)	[35]
10			[33]
10.	(a)	Let $f(x) = ax^2 + b$ where a and b are non-zero constant.	
		$\begin{array}{c} 15a + 4b = 96\\ 25a - 5b = 15\end{array}$	
		Solving, we have $a = 3$ and $b = 12$.	
		$\therefore f(x) = 3x^2 + 12x .$	[3]
	(b)	$8(3x^2 + 12x) = 0$ x = 0 or -4	
		\therefore <i>x</i> -intercept are 0 and -12.	[1]
	(c)	$\therefore 3x^2 + 12x - k = 0$ has two distinct real roots	
		$\therefore \Delta = \frac{12^2 - 4(3)(-k) > 0}{12^2 - 4(3)(-k)} > 0$	
		144 + 12k > 0	
		k > -12	[2]
11.	(a)	36 - (20 + a) = 14	
		a=2	
		30 + b = 31 b = 1	[2]
		D = 1	[3]
	(b)	(i) The original mode $= 36$	
		. The frequency of ages apart from age 36 is less than 3,	
		. The new mode = 36	[2]
		1 nus, there is no change in the mode of the distribution.	[2]

MATHCONCEPT education © copyright DSE.Math.Core.2022.Pa

14.	(a)	Let $p(x) = (cx + d)(x^2 - 2x + 3) + x + 13$, where <i>c</i> and <i>d</i> are constants. $p(x) = cx^3 + (d - 2c)x^2 + (3c - 2d + 1)x + (3d + 13).$	
		By comparing coefficients, we have $c = 2$ and $3d + 13 = -20$. Solving, we have $c = 2$ and $d = -11$.	
		$\therefore p(x) = 2x^3 - 15x^2 + 29x - 20.$	
		$\therefore a = -15$ and $b = 29$.	[3]
		$\frac{p(5)}{(5)^3 - 15(5)^2 + 29(5) - 20}$	
		= 0	
		$\therefore x - 5$ is a factor of $p(x)$.	[2]
	(b)	p(x) = 0	
		$\frac{(x-5)(2x^2-5x+4)=0}{x=5 \text{ or } 2x^2-5x+4=0}$	
		$\Delta = (-5)^2 - 4(2)(4)$	
		= -7	
		< 0	
		$\therefore 2x^2 - 5x + 4 = 0$ has no irrational roots.	
		Also note that 5 is not an irrational number.	
		$\therefore p(x) = 0$ has no irrational roots.	
			[3]
15.	(a)	The required probability	
		$=\frac{C_2^{10}C_2^{12}}{C_2^{11}}$	
		$\frac{C_4^{12}}{54}$	
		$=\frac{31}{133}$	[2]
	(b)	The required probability	
		$-\frac{54}{1}$	
		$-\frac{1}{133}$	
		$=\frac{73}{133}$	[2]
		$= \frac{1 - \frac{54}{133}}{= \frac{79}{133}}$	[2]

16.	(a)	g(x)	
		$= 3x^2 + 12kx + 16k^2 + 8$	
		$= 3(x^2 + 4kx) + 16k^2 + 8$	
		$= 3(x^2 + 4kx + 4k^2) + 4k^2 + 8$	
		$= 3(x+2k)^2 + 4k^2 + 8$	
		\therefore The coordinates of the vertex are $(-2k, 4k^2 + 8)$.	[2]
	(b)	Note that $B(2k, 8k^2 + 16)$.	
		Also, $AM: MB = 1:3$	
		Coordinates of M	
		$-\left(\frac{3(-2k)+(2k)}{3(4k^2+8)+(8k^2+16)}\right)$	
		$-\left(\begin{array}{ccc}1+3\end{array}, 1+3\end{array}\right)$	
		$=(-k,5k^2+10)$	[3]
17.	(a)	Note that $\alpha + \beta = -c$ and $\alpha\beta = -9$	
		$\alpha^2 + \beta^2$	
		$= (\alpha + \beta)^2 - 2\alpha\beta$	
		$= (-c)^2 - 2(-9)$	
		$= c^2 + 18$	[3]
	(b)	$\alpha^{2} + \beta^{2} - c^{2} = 85 - (\alpha^{2} + \beta^{2})$	
		$c^2 + 18 - c^2 = 85 - (c^2 + 18)$	
		$c^2 = 49$	
		Note that the 1st term = 49 and the common difference = 18	
		$\frac{n}{2}(2(49) + 18(n-1)) > 2 \times 10^{6}$	
		$9n^2 + 40n - 2 \times 10^6 > 0$	
		$n < \frac{-40 - \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ or $n > \frac{-40 + \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$	
		n < -473.6319808 or $n > 469.1875364$	
		\therefore The least value of <i>n</i> is 470.	[4]
18.	(a)	(i) $QR^2 = PQ^2 + PR^2 - 2(PQ)(PR) \cos \angle QPR$	
		$QR^2 = 30^2 + 25^2 - 2(30)(25)\cos 95^\circ$	
		QR = 40.69070673	
		$QR = 40.7 ext{ cm}$	[2]

(ii)
$$\frac{\sin 2PQR}{PR} = \frac{\sin 2QPR}{QR}$$

 $\frac{\sin 2PQR}{25} = \frac{\sin 95^{\circ}}{40.69070673}$
 $\angle PQR = 37.73809375^{\circ} or $\angle PQR = 142.261906^{\circ}$ (rejected)
 $\therefore \angle PQR = 37.7^{\circ}$ [2]
(b) $PM^2 = PQ^2 + QM^2 - 2(PQ)(QM) \cos \angle PQR$
 $PM^2 = 30^2 + \left(\frac{40.69070673}{2}\right)^2 - 2(30)\left(\frac{40.69070673}{2}\right)\cos 37.73809375^{\circ}$
 $PM = 18.66993831 \text{ cm}$
Let *S* and *N* be the projections of *R* and *M* on the horizontal ground
respectively.
 $MN = \frac{1}{2}RS$
 $= \frac{1}{2}PR \sin 70^{\circ}$
 $= \frac{1}{2}(25) \sin 70^{\circ}$
 $= 11.74615776 \text{ cm}$
Note that the angle between *PM* and the horizontal ground is $\angle MPN$.
 $\sin \angle MPN = \frac{11.74615776}{18.66993831}$
 $\angle MPN = \frac{11.74615776}{18.66993831}$
 $\angle MPN = \frac{11.74615776}{18.66993831}$
 $\angle MPN = \frac{11.27415776}{18.66993831}$
 $\angle MPN = \frac{11.27415776}{18.6993831}$
 $\angle MPN = \frac{11.27415776}{18.6993831}$
 $\angle MPN = \frac{11.27415}{18.6993831}$
 $\angle MPN = \frac{11.27415}{18.699383}$
 $= -\frac{4}{3}$
The required equation is
 $\frac{\sqrt{12}}{\sqrt{12}} = -\frac{4}{3}(x - 158)$
 $4x + 3y - 668 = 0$ [2]$

- (b) Radius of C is 75.
 - :: 83 + 75 = 158
 - \therefore *AP* is vertical or *AQ* is vertical.
 - $\therefore P(158,112) \text{ or } Q(158,112)$

 $\therefore \Delta AGP \cong \Delta AGQ \text{ and } AG \perp PQ .$

$$\therefore m_{PQ} = -\frac{1}{m_{AG}} = \frac{3}{4}$$

The equation of *PQ* is $y - 112 = \frac{3}{4}(x - 158)$.

$$\begin{cases} y - 112 = \frac{3}{4}(x - 158) \\ 4x + 3y - 668 = 0 \end{cases}$$

Solving, we have x = 110 and y = 76.

Thus, the coordinates of the point of intersection of AG and PQ are (110, 76)

(c) Let *B* and *r* be the centre and the radius of the inscribed circle of ΔAPQ respectively.

Note that AP = AQ and B lies on AG.

The *x*-coordinate of *B*

The *y*-coordinate of *B*

$$= -\frac{4}{3}(158 - r) + \frac{668}{3}$$
$$= \frac{4r}{3} + 12$$
$$\therefore B\left(158 - r, \frac{4r}{3} + 12\right)$$

The distance between and the point of intersection of AG and PQ is r.

$$((158 - r) - 110)^{2} + ((\frac{4}{3} + 12) - 76r)^{2} = r^{2}$$
$$\frac{16}{9}r^{2} - \frac{800}{3}r + 6400 = 0$$
$$r^{2} - 150r + 3600 = 0$$
$$r = 30 \text{ or } r = 120 \text{ (rejected)}$$

∴ B(128,52).

МатнСо

: The required equation is $(x - 128)^2 + (y - 52)^2 = 30^2$.

[4]

[3]

education © copyright DSE.Math.Core.2022.Paper.1_Suggested Solution_8/9

- (d) Note that $\angle APG = \angle AQG = 90^{\circ}$ and $\angle APG + \angle AQG = 180^{\circ}$.
 - : APGQ is a cyclic quadrilateral

and AG is a diameter of the circumcircle of ΔAPQ .

The radius of the circumcircle of ΔAPQ

$$=\frac{\frac{1}{2}\sqrt{(83-158)^2+(112-12)^2}}{=\frac{125}{2}}$$

 $=\frac{1}{2}$

By (c), the radius of the inscribed circle of $\triangle APQ$ is 30.

Area of the inscribed circle : Area of the circumcircle of ΔAPQ

$$= \frac{30^2}{2} \cdot \left(\frac{125}{2}\right)^2$$

$$= 144:625$$

 \neq 1:4

. The claim is disagreed.

[3]

