Sec	Section A(1) [35]			
1.	$\frac{(mn^{-2})^5}{m^{-4}}$			
	$= \frac{m^{-4}}{m^{-4}}$ $= \frac{m^{5-(-4)}}{n^{10}}$			
	$=\frac{m^3}{n^{10}}$	[3]		
2.	(a) $\alpha^2 + \alpha - 6$			
	$=(\alpha+3)(\alpha-2)$	[1]		
	$(\mathbf{b}) \qquad \alpha^4 + \alpha^3 - 6\alpha^2$			
	$= \alpha^2 (\alpha^2 + \alpha - 6)$			
	$= \alpha^2 (\alpha + 3)(\alpha - 2)$	[2]		
3.	(a) 600	[1]		
	(b) 534.76	[1]		
	(c) 530	[1]		
4.	a: b			
	= 6:7			
	<mark>= 12:14</mark>			
	a: c			
	= 4:3			
	<u>= 12:9</u>			
	a:b:c = 12:14:9			
	Let $a = 12k$, $b = 14k$ and $c = 9k$, where k is a non-zero constant.			
	$\frac{b+2c}{c}$			
	a + 2b 14k + 2(9k)			
	$=\frac{1}{12k+2(14k)}$			
	$=\frac{4}{r}$			
	J	[3]		

5.	Let x and $(1 + 28\%)x$ be the number of female and male applicants respectively.			
	(1+28%)x-x=91			
	0.28x = 91			
		x = 325		
	∴Tł	ne number of male applicants is 416 .	[4]	
6.	(a)	$3 - x > \frac{7 - x}{2}$		
		6 - 2x > 7 - x		
		-2x + x > 7 - 6		
		x < -1		
		Also,		
		5 + x > 4		
		x > -1		
		$\therefore x \neq -1$	[3]	
	(b)	-2	[1]	
7.	(a)	$\therefore 4x^2 + 12x + c = 0$ has equal roots		
		$\therefore \Delta = 12^2 - 4(4)c = 0$		
		c = 9	[3]	
	(b)	p(x) - 169 = 0		
		$4x^2 + 12x - 160 = 0$		
		4(x+8)(x-5) = 0		
		x = -8 or x = 5		
		$\therefore x$ -intercepts are -8 and 5.	[2]	
8.	(a)	∠AEC		
		$= \angle ADB$		
		= 42°		
		$\angle AEB$		
		$= \angle CAE$		
		$= 30^{\circ}$		
		$\angle BEC$		
		$= \angle AEC - \angle AEB$		
		$= 42^{\circ} - 30^{\circ}$		
		= 12°	[3]	

	(b)	∠DCE		
		$= \angle BDC$		
		= heta		
		∠CFE		
		$= 180^{\circ} - \angle BEC - \angle DCE$		
		$= 180^{\circ} - 12^{\circ} - \theta$		
		$= 168^{\circ} - \theta$	[2]	
9.	(a)	The mean = 5.4		
		The median = 5.5		
		The standard deviation = 0.917	[3]	
	(b)	The new median $= 5$		
		The decrease in the median $= 5.5 - 5 = 0.5$	[2]	
Sec	Section A(2) [35]			
10.	(a)	Let $P = a + hh^3$		
10.	(a)	a + 27b = 59		
		$a^{a} \begin{cases} a + 343b = 691 \end{cases}$		
		Solving, we have $a = 5$ and $b = 2$.		
		The required price		
		$= 5 + 2(4^3)$	543	
		= \$133	[4]	
	(b)	When $h = 5$,		
		$P = 5 + 2(5^3)$		
		<mark>= 255</mark>		
		> 2(133)		
		. The claim is not correct.	[2]	
11.	(a)	The range $= 50 + w - 11$		
		= (w + 39) grams		
		The inter-quartile range $= 38 - 23$		
		= 15 grams		
		w + 39 = 3(15)		
		w = 6	[4]	

MATHCONCEPT education © copyright

DSE.Math.Core.2020.Paper.1_Suggested.Solution_3/9

(b) The mode of the distribution is 38 grams.

$$=\frac{3}{10}$$

[2]

[3]

[3]

[3]

[5]

- 12. (a) The volume of the middle part of the circular cone = $\frac{1}{3}\pi(15^2)(36)\left(\frac{2^3-1^3}{3^3}\right)$
 - $= 700\pi$ cm³
 - (b) The curved surface area of the middle part of the circular cone

$$= \pi (15) \left(\sqrt{15^2 + 36^2} \right) \left(\frac{2^2 - 1^2}{3^2} \right)$$
$$= 195\pi \text{ cm}^2$$

13. (a) Let $f(x) = (x^2 - 1)q(x) + (kx + 8)$, where q(x) is a polynomial. f(1) = 0

$$f(1) = 0$$

 $(1^2 - 1)q(1) + (k + 8) = 0$
 $k = -8$

(b) Note that
$$f(x) = (x^2 - 1)q(x) + (-8x + 8)$$
.
 $\therefore f(-1) = ((-1)^2 - 1)q(-1) + ((-8)(-1) + 8) = 16$.

Now let f(x) = (x - 1)(x + 3)(ax + b), where a and b are constants.

$$f(0) = 24$$

(-1)(3)(b) = 24
 $b = -8$

$$f(-1) = 16$$

(-1-1)(-1+3)(-a-8) = 16.
$$a = -4.$$

- f(x) = (x 1)(x + 3)(-4x 8).
- \therefore The roots of f(x) = 0 are 1, -3 and -2.
- : All the roots of the equation f(x) = 0 are integers.
- ∴The claim is correct.

14.	(a)	The	x-coordinate of G	
		$=\frac{-10+}{2}$	<u>⊦30</u>	
		= 10		
		The	radius of C	
		= √(-	$-10 - 10)^2 + (0 + 15)^2$	
		= 25		
		The	equation of C is $(x - 10)^2 + (y + 15)^2 = 25^2$	[3]
	(b)	(i)	<u>Γ // L</u>	[1]
		(ii)	m_{Γ}	
			$= m_L$	
			$=\frac{0+15}{30-10}$	
			$=\frac{3}{4}$	
			The equation of Γ is	
			$y - 0 = \frac{3}{4} (x - (-10))$	
			3x - 4y + 30 = 0	[2]
		(iii)	$\tan \zeta ABC = \frac{3}{2}$	
			$4BC = 36.86989765^{\circ}$	
			$\sum ADG = 30.00007705$	
			Note that $\angle BAH = \angle ABG$ and $\angle BAG = \angle ABG$.	
			$- \langle RAH + \langle RAG \rangle$	
			$= 2 \angle ABG$	
			> 2(35°)	
			> 70°	
			: The claim is disagreed	[3]
Sec	tion	B		[35]
15.	(a)	The	e required probability	
		$-C_{4}^{7}$	$+ C_4^9$	
		- <u> </u>	<mark>719</mark> *4	
		$=\frac{16}{20}$	$\frac{51}{76}$	
		38	/0	[3]

(**b**) The required probability

$$= 1 - \frac{161}{3876}$$
$$= \frac{3715}{3876}$$

16. (a) Let a and r be the first term and the common ratio of the geometric sequence respectively.

 $ar^{2} = 144$

Solving, we have r = 1.5

 $\therefore a = 64$

. The first term of the sequence is 64

(b) $64 + 64(1.5) + 64(1.5^2) + \dots + 64(1.5^{n-1}) > 8 \times 10^{18}$ $\frac{64(1.5^n - 1)}{1.5 - 1} > 8 \times 10^{18}$ $1.5^n > 6.25 \times 10^{16} + 1$ $\log 1.5^n > \log(6.25 \times 10^{16} + 1)$ $n \log 1.5 > \log(6.25 \times 10^{16} + 1))$

n > 95.38167941

[2]

[2]

[3]

. The least value of n is 96.

17. (a) g(x) $= x^{2} - 2kx + 2k^{2} + 4$ $= x^2 - 2kx + k^2 + k^2 + 4$ $= (x - k)^2 + k^2 + 4$ \therefore The coordinates of the vertex are $(k, k^2 + 4)$ [2] (b) Note that $D(k-2, k^2+4)$ and $E(k+2, -k^2-4)$. Denote the point (0,3) by C. CD^2 $=((k-2)-0)^{2}+((k^{2}+4)-3)^{2}$ $= k^4 + 3k^2 - 4k + 5$ CE^2 $= (k + 2 - 0)^{2} + ((-k^{2} - 4) - 3)^{2}$ $= k^4 + 15k^2 + 4k + 53$

MATHCONCEPT education © copyright

DSE.Math.Core.2020.Paper.1_Suggested.Solution_6/9

		$CD^2 = CE^2$		
	$k^4 + 3k^2 - 4k + 5 = k^4 + 15k^2 + 4k + 53$			
		$3k^2 + 2k + 12 = 0$		
		$\Delta = 2^2 - 4(3)(12) = -140 < 0.$		
		$\therefore 3k^2 + 2k + 12 = 0$ has no real roots.		
		\therefore There is no such a point F .	[4]	
18.	(a)	$\angle TUV = \angle TWU$ (\angle in	alt. segment)	
		$\angle UTV = \angle UTW$ (com	non angle)	
		$\angle TVU = \angle TUW \qquad (\angle su$	$\operatorname{Im} \operatorname{of} \Delta$)	
		$\Delta UTV \sim \Delta WTU \tag{AAA}$.) [2]	
	(b)	(i) $\frac{TW}{TU} = \frac{TU}{TV}$ $\frac{TV + VW}{TU} = \frac{TU}{TV}$ $\frac{325 + VW}{780} = 325$ $VW = 1547 \text{ cm}$ $\therefore \text{ The circumference of } C \text{ is } 1547\pi \text{ cm}.$ (ii) By (a), we have $UV: UW = TV: TU = 325: 78$ $\because VW \text{ is a diameter of } C$ $\therefore \angle VUW = 90^{\circ}.$ By Pyth. Theorem, $UV: UW: VW = 5: 12: 13.$ $UV = (1547) \left(\frac{5}{13}\right)$ $= 595 \text{ cm}$ $UW = (1547) \left(\frac{12}{13}\right)$ $= 1428 \text{ cm}$ The perimeter of ΔUVW $= 595 + 1428 + 1547$ $= 3570 \text{ cm}$ $= 35.7 \text{ m}$	[2] 0 = 5:12.	
		> 35 m	[7]	
		The claim is agreed.	[3]	

(ii) Denote the projection of *S* on the horizontal ground by *K*. Let *T* be the point at which *PS* produced and *QR* produced meet. Note that $\Delta SKT \sim \Delta PGT$ and PT = PQ.

