HKDSE Mathematics 2017 Core Paper 1 - Suggested Solution

Section A(1)

1. $k=\frac{3 x-y}{y}$

$$
\begin{align*}
k y & =3 x-y \\
y(k+1) & =3 x \\
y & =\frac{3 x}{k+1} \tag{3}
\end{align*}
$$

2. $\frac{\left(m^{4} n^{-1}\right)^{3}}{\left(m^{-2}\right)^{5}}$
$=\frac{m^{12} n^{-3}}{m^{-10}}$
$=\frac{m^{12+10}}{n^{3}}$
$=\frac{m^{n^{2}}}{n^{3}}$
3. (a) $x^{2}-4 x y+3 y^{2}$

$$
\begin{equation*}
=(x-3 y)(x-y) \tag{1}
\end{equation*}
$$

(b) $x^{2}-4 x y+3 y^{2}+11 x-33 y$

$$
\begin{align*}
& =(x-3 y)(x-y)+11(x-3 y) \\
& =(x-3 y)(x-y+11) \tag{2}
\end{align*}
$$

4. Let \boldsymbol{x} and $5 \boldsymbol{x}$ be the number of concessionary tickets and regular tickets sold respectively.

$$
\begin{aligned}
\mathbf{5 x}(\mathbf{1 2 6)}+\boldsymbol{x}(\mathbf{7 8}) & =\mathbf{5 0 9 7 6} \\
708 x & =50976 \\
x & =72
\end{aligned}
$$

The total number of admission tickets sold that day

$$
=6(72)
$$

$$
=432
$$

\therefore The total number of admission tickets sold that day is 432.
5. (a) $7(x-2) \leq \frac{11 x+8}{3}$
$21 x-42 \leq 11 x+8$

$$
x \leq 5
$$

Also,
$6-x<5$

$$
x>1
$$

\therefore the required range is $1<x \leq 5$.
(b) 4
6. (a) $A^{\prime}(-4,-3)$

$$
\begin{equation*}
B^{\prime}(9,9) \tag{2}
\end{equation*}
$$

(b) $m_{A B}$
$=\frac{4+9}{-3-9}$
$=-\frac{13}{12}$
$m_{A^{\prime} B^{\prime}}$
$=\frac{-3-9}{-4-9}$
$=\frac{12}{13}$
$\therefore m_{A B} \times m_{A^{\prime} B^{\prime}}=-1$
$\therefore A B$ is perpendicular to $A^{\prime} B^{\prime}$
7. (a) $\frac{x}{360}=\frac{1}{9}$

$$
\begin{align*}
x & =\frac{360}{9} \\
x & =40^{\circ} \tag{2}
\end{align*}
$$

(b) Let n be the number of students in the school.
$\begin{aligned} \frac{n}{360} & =\frac{180}{360-90-158-40} \\ \frac{n}{360} & =\frac{180}{72} \\ n & =900\end{aligned}$
\therefore the number of students in the school is 900 .
8. (a) Let $y=\frac{k}{\sqrt{x}}$

So, we have $81=\frac{k}{\sqrt{144}}$
Solving, we have $\mathbf{k}=972$
$\therefore y=\frac{972}{\sqrt{x}}$
(b) Note that the initial value of y is 81 .

The final value of y
$=\frac{972}{\sqrt{324}}$
$=54$
The decrease in the value of y
$=81-54$
$=27$

HKDSE Mathematics 2017 Core Paper 1 - Suggested Solution
9. (a) The maximum absolute error
$=5 \mathrm{~mL}$
The least possible capacity
$=200-5$
$=195 \mathrm{~mL}$
(b) The least possible total capacity of 120 standard bottles

$$
\begin{aligned}
& =(195)(120) \\
& =23400 \mathrm{~mL} \\
& =23.4 \mathrm{~L} \\
& >23.35 \mathrm{~L}
\end{aligned}
$$

\therefore the claim is disagreed

Section A(2)			[35]
10. (a)	$O P=O R$	(given)	
	$P S=R S$	(given)	
	$O S=O S$	(common side)	
	$\triangle O P S \cong \triangle O R S$	(SSS)	[2]
(b)	$\angle P O Q$		
	$=2 \angle P R Q$		
	$=2\left(10^{\circ}\right)$		
	$=20^{\circ}$		
	$\angle P O R$		
	$=\angle P O Q+\angle Q O R$		
	$=\angle P O Q+\angle P O Q$ (by (a))		
	$=2 \angle P O Q$		
	$=40^{\circ}$		

The area of the sector OPQR
$=\frac{40}{360}\left(6^{2}\right) \pi$
$=4 \pi \mathrm{~cm}^{2}$

HKDSE Mathematics 2017 Core Paper 1 - Suggested Solution
11. (a) The median
$=\$ 69$
Note that $\frac{61(3)+63+64+66+68+69(2)+70+a+77(2)+78+81+80+b}{15}=70$

$$
a+b=5
$$

Also note that $(80+b)-61=22$
Solving, we have $\boldsymbol{a}=\mathbf{2}$ and $\boldsymbol{b}=\mathbf{3}$
The standard deviation
$=\$ 7.33$
(b) The required probability
$=\frac{6}{15}$
$=\frac{2}{5}$
12. (a) Let $V \mathrm{~cm}^{3}$ be the volume of the larger pyramid.
$V+V \times\left(\sqrt{\frac{4}{9}}\right)^{3}=(84)(20)$

$$
\begin{aligned}
\frac{35 V}{27} & =1680 \\
V & =\mathbf{1 2 9 6}
\end{aligned}
$$

\therefore The volume of the larger pyramid is $1296 \mathrm{~cm}^{3}$
(b) The length of the side of the base of the larger pyramid
$=\sqrt{\frac{3(1296)}{12}}$
$=18 \mathrm{~cm}$
The total surface area of the larger pyramid
$=(18)(18)+4\left(\frac{1}{2}(18) \sqrt{\left(\frac{18}{2}\right)^{2}+12^{2}}\right)$
$=864 \mathrm{~cm}^{2}$
The total surface area of the smaller pyramid
$=\frac{4}{9}(864)$
$=384 \mathrm{~cm}^{2}$
\therefore The total surface area of the smaller pyramid is $384 \mathrm{~cm}^{2}$
13. (a) The equation of C is

$$
\begin{align*}
& (x-2)^{2}+(y+1)^{2}=(-6-2)^{2}+(5+1)^{2} \\
& (x-2)^{2}+(y+\mathbf{1})^{2}=\mathbf{1 0 0} \tag{2}
\end{align*}
$$

HKDSE Mathematics 2017 Core Paper 1 - Suggested Solution
(b) Note that the radius of C is 10 .

$$
\begin{aligned}
& F G \\
= & \sqrt{(-3-2)^{2}+(11+1)^{2}} \\
= & 13 \\
> & 10
\end{aligned}
$$

$\therefore \boldsymbol{F}$ lies outside \boldsymbol{C}.
(c) (i) F, G and H are collinear.
(ii) $m_{F H}$

$$
\begin{aligned}
& =m_{F G} \\
& =\frac{11-(-1)}{-3-2} \\
& =-\frac{12}{5}
\end{aligned}
$$

The required equation is

$$
\begin{aligned}
& y-11=-\frac{12}{5}(x-(-3)) \\
& 5 y-55=-12 x-36 \\
& \mathbf{1 2 x}+\mathbf{5 y}-\mathbf{1 9}=\mathbf{0}
\end{aligned}
$$

14. (a) Note that $f(x)=\left(2 x^{2}+a x+4\right)(3 x+7)+b x+c$.

$$
=6 x^{3}+3 a x^{2}+12 x+14 x^{2}+7 a x+28+b x+c
$$

Also note that $f(x)=6 x^{3}-13 x^{2}-46 x+34$.
By comparing coefficient, we have $3 a+14=-13$

$$
\begin{equation*}
a=-9 \tag{3}
\end{equation*}
$$

(b) (i) Let $g(x)=k\left(2 x^{2}+a x+4\right)+b x+c$, where k is a constant.

$$
\begin{align*}
& f(x)-g(x) \\
= & \left(2 x^{2}+a x+4\right)(3 x+7)-k\left(2 x^{2}+a x+4\right) \\
= & \left(2 x^{2}+a x+4\right)(3 x+7-k) \\
\therefore & \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{x}) \text { is divisible by } \mathbf{2} \boldsymbol{x}^{2}+\boldsymbol{a x}+\mathbf{4} . \tag{2}
\end{align*}
$$

(ii)

$$
f(x)-g(x)=0
$$

$$
\left(2 x^{2}-9 x+4\right)(3 x+7-k)=0(\text { by }(\mathrm{a}) \text { and }(\mathrm{b})(\mathrm{i}))
$$

$$
(2 x-1)(x-4)(3 x+7-k)=0
$$

Note that $\frac{1}{2}$ is a root of the above equation.
\therefore Not all the roots of the equation $f(x)-g(x)=0$ are integers.
\therefore The claim is disagreed.

HKDSE Mathematics 2017 Core Paper 1 - Suggested Solution

Section B

15. $\left\{\begin{array}{l}3=a+\log _{b} 243 \\ 0=a+\log _{b}\end{array}\right.$
$\left\{\begin{array}{l}0=a+\log _{b} 9\end{array}\right.$
$\left\{\begin{array}{l}b^{3-a}=243 \\ b^{-a}=9\end{array}\right.$
$\left\{\begin{array}{l}9\left(b^{3}\right)=243 \\ b^{-a}=9\end{array}\right.$
Solving, we have $\boldsymbol{a}=\mathbf{- 2}$ and $\boldsymbol{b}=\mathbf{3}$

$$
\begin{align*}
y & =-2+\log _{3} x \\
y+2 & =\log _{3} x \\
x & =3^{y+2} \tag{4}
\end{align*}
$$

16. (a) The required volume
$=1.5 \times 10^{7}+1.5 \times 10^{7} \times 0.9+1.5 \times 10^{7} \times(0.9)^{2}+\cdots+1.5 \times 10^{7} \times(0.9)^{19}$
$=\frac{1.5 \times 10^{7}\left(1-0.9^{20}\right)}{1-0.9}$
$=1.32 \times 10^{8} \mathrm{~m}^{3}$
(b) The total volume of water imported since the start of the plan
$<1.5 \times 10^{7}+1.5 \times 10^{7} \times 0.9+1.5 \times 10^{7} \times(0.9)^{2}+\cdots$
$=\frac{1.5 \times 10^{7}}{1-0.9}$
$=1.5 \times 10^{8} \mathrm{~m}^{3}$
$<1.6 \times 10^{8} \mathrm{~m}^{3}$
\therefore The claim is agreed.
17. (a) The required probability

$$
\begin{align*}
& =\frac{C_{4}^{4} C_{1}^{15}}{C_{5}^{19}} \\
& =\frac{5}{3876} \tag{2}
\end{align*}
$$

(b) The required probability

$$
\begin{align*}
& =\frac{C_{3}^{4} C_{2}^{15}}{C_{5}^{19}} \\
& =\frac{35}{969} \tag{2}
\end{align*}
$$

(c) The required probability

$$
\begin{aligned}
& =1-\frac{5}{3876}-\frac{35}{969} \\
& =\frac{3731}{3876}
\end{aligned}
$$

18. (a) Putting $y=19$ in $y=2 x^{2}-2 k x+2 x-3 k+8$, we have

$$
\begin{aligned}
& \quad 2 x^{2}-2 k x+2 x-3 k+8=19 . \\
& 2 x^{2}+(2-2 k) x-(3 k+11)=0 . \\
& \quad \Delta \\
& =(2-2 k)^{2}-4(2)(-(3 k+11)) \\
& =4 k^{2}+16 k+92 \\
& =4\left(k^{2}+4 k+2^{2}-2^{2}\right)+92 \\
& =4(k+2)^{2}+76 \\
& >0
\end{aligned}
$$

$\therefore L$ and Γ intersect at two distinct points.
(b) (i) Note that the roots of the equation $2 x^{2}+(2-2 k) x-(3 k+11)=0$ are a and b.
$\therefore a+b=-\frac{2-2 k}{2}=k-1$ and $a b=-\frac{3 k+11}{2}$

$$
\begin{aligned}
& (a-b)^{2} \\
= & a^{2}-2 a b+b^{2} \\
= & (a+b)^{2}-4 a b \\
= & (k-1)^{2}-4\left(-\frac{3 k+11}{2}\right) \\
= & k^{2}-2 k+1+6 k+22 \\
= & \boldsymbol{k}^{2}+4 \boldsymbol{k}+23
\end{aligned}
$$

(ii) $\quad A B<4$

$$
\begin{aligned}
\sqrt{(a-b)^{2}} & <4 \\
(a-b)^{2} & <16 \\
k^{2}+4 k+23 & <16 \\
k^{2}+4 k+7 & <0
\end{aligned}
$$

Note that $42-4(1)(7)=-12<0$.
Also note that the coefficient of k^{2} is positive.
$\therefore k^{2}+4 k+7<0$ has no solutions.
\therefore It is not possible.
19. (a) By sine formula, we have

$$
\begin{aligned}
\frac{A C}{\sin \angle A B C} & =\frac{B C}{\sin \angle B A C} \\
\frac{A C}{\sin \left(180^{\circ}-30^{\circ}-42^{\circ}\right)} & =\frac{24}{\sin 30^{\circ}} \\
A C & =45.65071278 \mathrm{~cm} \\
\boldsymbol{A C} & =\mathbf{4 5 . 7} \mathbf{~ c m}
\end{aligned}
$$

\therefore The length of AC is 45.7 cm .
(b) (i) Since $\triangle A D F \sim \triangle C E F$, we have $\frac{A F}{C F}=\frac{A D}{C E}$

$$
\begin{aligned}
\frac{A F}{C F} & =\frac{10}{2} \\
A C+C F & =5 C F \\
C F & =\frac{1}{4} A C \\
C F & =11.4126782 \mathrm{~cm} \\
C F & =\mathbf{1 1 . 4} \mathbf{~ c m}
\end{aligned}
$$

\therefore The distance between C and F is 11.4 cm .
(ii) The area of $\triangle A B F$

$$
\begin{aligned}
& =\frac{1}{2}(A C+C F)(B C \sin \angle A C B) \\
& =\frac{1}{2}(45.65071278+11.4126782)\left(24 \sin 42^{\circ}\right) \\
& =458.1943369 \\
& =\mathbf{4 5 8} \mathbf{c m}^{2}
\end{aligned}
$$

(iii) Note that $\angle B C F=138^{\circ}$.

By cosine formula, we have

$$
\begin{aligned}
B F^{2} & =C F^{2}+B C^{2}-2(B C)(B F) \cos \angle B C F \\
B F^{2} & =(11.4126782)^{2}+24^{2}-2(11.4126782)(24) \cos 138^{\circ} \\
B F & =33.36690449 \mathrm{~cm}
\end{aligned}
$$

Let P be the foot of the perpendicular from A to $B F$ produced.
Note that the area of $\triangle A B F=\frac{1}{2}(A P)(B F)$.

$$
\begin{aligned}
& A P \\
= & \frac{2(458.1943369)}{33.36690449} \\
= & 27.46400026 \mathrm{~cm}
\end{aligned}
$$

HKDSE Mathematics 2017 Core Paper 1 - Suggested Solution

Since DP is perpendicular to FB produced, the inclination of the thin metal sheet ABC to the horizontal ground is $\angle \mathrm{APD}$.
$\sin \angle A P D=\frac{A D}{A P}$
$\sin \angle A P D=\frac{10}{27.46400026}$
$\angle A P D=21.35300646^{\circ}$
\therefore The required inclination is $\mathbf{2 1 . 4}{ }^{\circ}$
(iv) The area of $\triangle B D F$
$=($ The area of $\triangle A B F) \cos \angle A P D$
\leq The area of $\triangle A B F$
$=458 \mathrm{~cm}^{2}(\mathrm{by}(\mathrm{b})(\mathrm{ii}))$
$<460 \mathrm{~cm}^{2}$
\therefore The claim is disagreed.

