Sect	Section A(1) [3		
1.	<mark>y(k</mark>	$k = \frac{3x - y}{y}$ $ky = 3x - y$ $+ 1) = 3x$ $3x$	
		$y = \frac{1}{k+1}$	[3]
2.	$\frac{(m)}{(m)} = \frac{m}{(m)}$ $= \frac{m}{(m)}$	$\frac{(4n^{-1})^{3}}{n^{-2})^{5}}$ $\frac{(n^{-1})^{3}}{n^{-10}}$ $\frac{(n^{-1})^{3}}{n^{-10}}$ $\frac{(n^{-1})^{3}}{n^{3}}$ $\frac{(n^{-1})^{3}}{n^{3}}$	[2]
	n	j 	[3]
3.	(a)	$x^2 - 4xy + 3y^2$	[1]
		=(x-3y)(x-y)	[1]
	(b)	$x^2 - 4xy + 3y^2 + 11x - 33y$	
		= (x - 3y)(x - y) + 11(x - 3y)	543
		=(x-3y)(x-y+11)	[2]
4.	Let x and 5x be the number of concessionary tickets and regular tickets sold respectively.		
	<mark>5x(</mark>	126) + x(78) = 50976	
		708x = 50976	
		x = 72	
	T	he total number of admission tickets sold that day	
	= 6	(72)	
	= 43	32	5.43
	i Ti	ne total number of admission tickets sold that day is 432.	[4]
5.	(a)	$7(x-2) \le \frac{11x+8}{3}$	
		$21x - 42 \le 11x + 8$	
		$x \leq 5$	
		Also,	
		6 - x < 5	
		<i>x</i> > 1	
		\therefore the required range is $1 < x \le 5$.	[3]
	(b)	4	[1]

6.	(a)	A' (-4, -3)	
		B ' (9,9)	[2]
	(b)	m_{AB}	
		$=\frac{4+9}{-3-9}$	
		$=-\frac{13}{12}$	
		$m_{A'B'}$	
		$=\frac{-3-9}{-4-9}$	
		$=\frac{12}{13}$	
		$\therefore m_{AB} \times m_{A'B'} = -1$	
		$\therefore AB$ is perpendicular to $A'B'$	[2]
7.	(a)	<u>x 1</u>	
		<mark>360 9</mark> 360	
		$x = \frac{1}{9}$	[2]
	(h)	x = 40 Let <i>n</i> be the number of students in the school	
	(0)	$\frac{n}{180}$	
		$\frac{1}{360} = \frac{1}{360 - 90 - 158 - 40}$	
		$\frac{\pi}{360} = \frac{180}{72}$	
		n = 900	
		\therefore the number of students in the school is 900 .	[2]
8.	(a)	Let $y = \frac{k}{\sqrt{x}}$	
		So, we have $81 = \frac{k}{\sqrt{144}}$	
		Solving, we have $\mathbf{k} = 972$	
		$\therefore \ y = \frac{972}{\sqrt{x}}$	[3]
	(b)	Note that the initial value of y is 81.	
		The final value of y	
		$= \frac{972}{1}$	
		$\frac{\sqrt{324}}{54}$	
		The decrease in the value of y	
		= 81 - 54	
		= 27	[2]

9.	(a)	The maximum absolute error = 5 mL			
		The least possible capacity			
		= 200 - 5		[2]	
		= 195 mL		[2]	
	(b)	The least possible total capa	city of 120 standard bottles		
		= (195)(120) = 22400mI			
		= 23400 mL			
		> 23.35 L			
		: the claim is disagreed			
				[3]	
Sec	tion A	A(2)		[35]	
10.	(a)	OP = OR	(given)		
		PS = RS	(given)		
		OS = OS	(common side)		
		$\Delta OPS \cong \Delta ORS$	(SSS)	[2]	
	(b)	∠POQ			
		$= 2 \angle PRQ$			
		$= 2(10^{\circ})$			
		= 20°			
		∠POR			
		$= \angle POQ + \angle QOR$			
		$= \angle POQ + \angle POQ \text{ (by (a))}$			
		$= 2 \angle POQ$			
		$=40^{\circ}$			
		The area of the sector OPQF	2		
		$=\frac{40}{360}(6^2)\pi$			
		$= 4\pi \text{ cm}^2$		глэ	
				[4]	

MATHCONCEPT education © copyright

education © copyright

DSE.Math.Core.2017.Paper.1_Suggested.Solution_4/9

education © copyright

Section B			[35]
15.	$\begin{cases} 3 = a + \log_b 243 \\ 0 = a + \log_b 2 \end{cases}$		
	$\left(\frac{0}{b^{3-a}-242}\right)$		
	{ <mark>b</mark> -	$a^{-a} = 9$	
	$\begin{cases} 9(b^3) = 243 \\ 1 = a \end{cases}$		
	$b^{-a} = 9$ Solving, we have $a = -2$ and $b = 3$		
	Solving, we have $u = -2$ and $b = 5$ $y = -2 + \log_3 x$		
	y +	$2 = \log_3 x$	
	$x = 3^{y+2}$		[4]
16.	(a)	The required volume	
		$= 1.5 \times 10^{7} + 1.5 \times 10^{7} \times 0.9 + 1.5 \times 10^{7} \times (0.9)^{2} + \dots + 1.5 \times 10^{7} \times (0.9)^{19}$	
		$=\frac{1.5\times10^{7}(1-0.9^{20})}{1-0.9^{20}}$	
		$= 1.32 \times 10^8 \text{ m}^3$	[2]
	(b)	The total volume of water imported since the start of the plan	
	(0)	$< 1.5 \times 10^7 + 1.5 \times 10^7 \times 0.9 + 1.5 \times 10^7 \times (0.9)^2 + \cdots$	
		1.5×10^{7}	
		$\frac{1}{1-0.9}$	
		$= 1.5 \times 10^8 \text{ m}^3$	
		$< 1.0 \times 10^{-10}$ III	[2]
1.			[#]
17.	(a)	The required probability c^4c^{15}	
		$=\frac{c_4 c_1}{c_5^{19}}$	
		$=\frac{5}{3876}$	[2]
	(b)	The required probability	
		$- C_3^4 C_2^{15}$	
		$-C_{5}^{19}$	
		$=\frac{35}{969}$	[2]
	(c)	The required probability	
		$=1-\frac{5}{3876}-\frac{35}{969}$	
		$=\frac{3731}{3374}$	[2]
		38/6	

18. (a) Putting
$$y = 19$$
 in $y = 2x^2 - 2kx + 2x - 3k + 8$, we have
 $2x^2 - 2kx + 2x - 3k + 8 = 19$.
 $2x^2 + (2 - 2k)x - (3k + 11) = 0$.
A
= $(2 - 2k)^2 - 4(2)(-(3k + 11))$
= $4k^2 + 16k + 92$
= $4(k^2 + 4k + 2^2 - 2^2) + 92$
= $4(k + 2)^2 + 76$
> 0
 $\therefore L$ and Γ intersect at two distinct points. [3]
(b) (i) Note that the roots of the equation $2x^2 + (2 - 2k)x - (3k + 11) = 0$
are a and b .
 $\therefore \frac{a + b = -\frac{2-2k}{2} = k - 1$ and $ab = -\frac{3k+11}{2}$
 $(a - b)^2$
= $a^2 - 2ab + b^2$
= $(a + b)^2 - 4ab$
= $(k - 1)^2 - 4\left(-\frac{3k + 11}{2}\right)$
= $k^2 - 2k + 1 + 6k + 22$
= $k^2 + 4k + 23$ [3]
(ii) $AB < 4$
 $\sqrt{(a - b)^2} < 4$
 $(a - b)^2 < 16$
 $k^2 + 4k + 7 < 0$
Note that $42 - 4(1)(7) = -12 < 0$.
Also note that the coefficient of k^2 is positive.
 $\therefore k^2 + 4k + 7 < 0$ has no solutions.
 \therefore It is not possible. [2]

19.	9. (a) By sine formula, we have						
	$\frac{AC}{\sin \angle ABC} = \frac{BC}{\sin \angle BAC}$						
		$\frac{1}{\sin(1)}$	$\frac{AC}{\sin(180^\circ - 30^\circ - 42^\circ)} = \frac{24}{\sin 20^\circ}$				
		511(1	$\sin(180^\circ - 30^\circ - 42^\circ)$ sin 30° AC = 45.65071278 cm				
	AC = 45.7 cm						
		∴ Th	he length of AC is 45.7 cm.	[2]			
	(b)	(i)	Since $\triangle ADF \sim \triangle CEF$, we have $\frac{AF}{CF} = \frac{AD}{CE}$				
			$\frac{AF}{CF} = \frac{10}{2}$				
			AC + CF = 5CF				
			$CF = \frac{1}{4}AC$				
			CF = 11.4126782 cm				
			CF = 11.4 cm				
			\therefore The distance between C and F is 11.4 cm.	[2]			
		(ii)	The area of $\triangle ABF$				
			$=\frac{1}{2}(AC+CF)(BCsin\angle ACB)$				
			$=\frac{1}{2}(45.65071278 + 11.4126782)(24\sin 42^{\circ})$				
			= 458.1943369				
			$= 458 \text{ cm}^2$	[2]			
		(iii)	Note that $\angle BCF = 138^{\circ}$.				
			By cosine formula, we have				
			$BF^2 = CF^2 + BC^2 - 2(BC)(BF) \cos \angle BCF$				
			$BF^{2} = (11.4126782)^{2} + 24^{2} - 2(11.4126782)(24)\cos 138^{\circ}$				
			BF = 33.36690449 cm				
			Let <i>P</i> be the foot of the perpendicular from <i>A</i> to <i>BF</i> produced.				
			Note that the area of $\triangle ABF = \frac{1}{2}(AP)(BF)$.				
			AP				
			$=\frac{2(458.1943369)}{33.36690449}$				
			= 27.46400026 cm				

Since DP is perpendicular to FB produced, the inclination of the thin metal sheet ABC to the horizontal ground is \angle APD. $\sin \angle APD = \frac{AD}{AP}$ 10 $\sin \angle APD = \frac{1}{27.46400026}$ $\angle APD = 21.35300646^{\circ}$ \therefore The required inclination is 21.4° [5] The area of ΔBDF (iv) = (The area of $\triangle ABF$)cos $\angle APD$ \leq The area of $\triangle ABF$ $= 458 \text{ cm}^2$ (by (b)(ii)) $< 460 \text{ cm}^2$ \therefore The claim is disagreed. [2]

