HKDSE Mathematics 2016 Core Paper 1 - Suggested Solution

Section A(1)

1. $\frac{\left(x^{8} y^{7}\right)^{2}}{x^{5} y^{-6}}$
$=\frac{x^{16} y^{14}}{x^{5} y^{-6}}$
$=x^{16-5} y^{14-(-6)}$
$=x^{11} y^{20}$
2. $A x=(4 x+B) C$

$$
A x=4 C x+B C
$$

$$
A x-4 C x=B C
$$

$$
(A-4 C) x=B C
$$

$$
\begin{equation*}
x=\frac{B C}{A-4 C} \tag{3}
\end{equation*}
$$

3. $\frac{2}{4 x-5}+\frac{3}{1-6 x}$

$$
\begin{align*}
& =\frac{2(1-6 x)+3(4 x-5)}{(4 x-5)(1-6 x)} \\
& =\frac{2-12 x+12 x-15}{(4 x-5)(1-6 x)} \\
& =-\frac{13}{(4 x-5)(\mathbf{6 x - 1})} \\
& =\frac{13}{(4 x-5)(6 x-1)} \tag{3}
\end{align*}
$$

4. (a) $5 m-10 n$

$$
\begin{equation*}
=5(m-2 n) \tag{1}
\end{equation*}
$$

(b) $m^{2}+m n-6 n^{2}$

$$
\begin{equation*}
=(m+3 n)(m-2 n) \tag{1}
\end{equation*}
$$

(c) $\quad m^{2}+m n-6 n^{2}-5 m+10 n$

$$
\begin{align*}
& =(m+3 n)(m-2 n)-5(m-2 n) \\
& =(\boldsymbol{m}-\mathbf{2 n})(\boldsymbol{m}+\mathbf{3 n}-\mathbf{5}) \tag{2}
\end{align*}
$$

5. Let $1.4 y$ and y be the number of male members and female members respectively.
$1.4 y+y=180$

$$
y=75
$$

\therefore The required difference $=1.4(75)-75$

$$
\begin{equation*}
=30 \tag{4}
\end{equation*}
$$

6. (a) $x+6<6(x+1)$
$x+6<6 x+66$
$-5 x<60$
$x>-12$
$\therefore x>-12$ or $x \leq-5$
\therefore The solution is all real numbers.
(b) -1
7. (a) $\angle A O B$
$=135^{\circ}-75^{\circ}$
$=60^{\circ}$
(b) Since $A O=B O$, we have $\angle O A B=\angle O B A$

Note that $\angle O A B+\angle O B A+60^{\circ}=180^{\circ}$
$\therefore \angle O A B=\angle O B A=60^{\circ}$
$\therefore \triangle A O B$ is an equilateral triangle.
The required perimeter
$=3(12)$
$=36$
(c) 3
8. (a) Let $f(\boldsymbol{x})=\boldsymbol{h} \boldsymbol{x}+\boldsymbol{k} \boldsymbol{x}^{2}$
$\therefore\left\{\begin{array}{l}3 h+9 k=48 \\ 9 h+81 k=198\end{array}\right.$
Solving, we have $\boldsymbol{h}=13$ and $\boldsymbol{k}=\mathbf{1}$
$\therefore f(x)=13 x+x^{2}$
(b) $\quad f(x)=90$
$13 x+x^{2}=90$
$x^{2}+13 x-90=0$
$(x-5)(x+18)=0$
$\boldsymbol{x}=5$ or $\boldsymbol{x}=-18$
9. (a) $x=2+4=\mathbf{6}$
$y=37-15=\mathbf{2 2}$
$z=37+3=40$
(b) The required probability
$=\frac{22-6}{40}$
$=\frac{2}{5}$

HKDSE Mathematics 2016 Core Paper 1 - Suggested Solution

Section A(2)

10. (a) Let (x, y) be the coordinate of P.

$$
\begin{aligned}
\sqrt{(x-5)^{2}+(y-7)^{2}} & =\sqrt{(x-13)^{2}+(y-1)^{2}} \\
\mathbf{4} \boldsymbol{x}-\mathbf{3 y}-\mathbf{2 4} & =\mathbf{0}
\end{aligned}
$$

\therefore The equation of Γ is $4 x-3 y-24=0$
(b) Put $y=0$ into $4 x-3 y-24=0$, we have $x=6$
$\therefore H(6,0)$
Put $x=0$ into $4 x-3 y-24=0$, we have $y=-8$
$\therefore K(0,-8)$
Diameter of C
$=H K$
$=\sqrt{(6-0)^{2}+(0-(-8))^{2}}$
$=10$
Circumference of C
$=10 \pi$
$=31.416$
>30
\therefore The claim is agreed.
11. (a) Let $V \mathrm{~cm}^{3}$ be the required volume.

$$
\begin{array}{r}
\frac{V-444 \pi}{V}=\left(\frac{12}{16}\right)^{3} \\
V=768 \pi
\end{array}
$$

\therefore The required volume is $768 \pi \mathrm{~cm}^{3}$
(b) Let $r \mathrm{~cm}$ be the radius of the wet curved surface.

$$
\begin{aligned}
\frac{1}{3} \pi r^{2}(16) & =768 \pi \\
r & =12
\end{aligned}
$$

The final area of the we curved surface
$=\pi(12) \sqrt{12^{2}+16^{2}}$
$=753.9822369$
$<800 \mathrm{~cm}^{2}$
\therefore The claim is disagreed.

HKDSE Mathematics 2016 Core Paper 1 - Suggested Solution
12. (a) $11+a=11+b+4$

$$
a=b+4
$$

Note that $a>11$ and $4<b<10$
$\therefore\left\{\begin{array}{c}a=12 \\ b=8\end{array}\right.$ or $\left\{\begin{array}{c}a=13 \\ b=9\end{array}\right.$
(b) (i) When the ages of the children are 7, 8, 9 and 10, the median is the greatest.

The greatest possible median $=\mathbf{8}$
(ii) When the ages of the children are 6, 7, 8 and 9 , the mean is the smallest.

By (a), there are 2 cases.
Case 1: $a=12$ and $b=8$
The mean $=\frac{12(6)+13(7)+12(8)+9(9)+4(10)}{12+13+12+9+4}=7.6$
Case 2: $a=13$ and $b=9$
The mean $=\frac{12(6)+14(7)+12(8)+10(9)+4(10)}{12+14+12+10+4}=7.61538$
\therefore The least possible mean is 7.6
13. (a) In $\triangle A C D$ and $\triangle A B E$,
$\angle A D C=\angle A E B$
$A D=A E$
$C E=B D$
$C E+D E=B D+D E$ $C D=B E$
$\triangle A C D \cong \triangle A B E$
(given)
(side opp. equal $\angle \mathrm{s}$)
(given)
(SAS)
(b) (i) Note that $D M=E M=9 \mathrm{~cm}$ and $\angle A M D=\angle A M E=90^{\circ}$

$$
\begin{aligned}
& A M \\
= & \sqrt{A D^{2}-D M^{2}} \\
= & \sqrt{144} \\
= & \mathbf{1 2} \mathrm{cm}
\end{aligned}
$$

HKDSE Mathematics 2016 Core Paper 1 - Suggested Solution
(ii) $A B^{2}$
$=A M^{2}+B M^{2}$
$=144+16^{2}$
$=400$
By (a), we have $A E=A D=15 \mathrm{~cm}$

$$
\begin{aligned}
& A B^{2}+A E^{2} \\
= & 400+15^{2} \\
= & 625
\end{aligned}
$$

$$
B E^{2}
$$

$$
=(B D+D E)^{2}
$$

$$
=(7+18)^{2}
$$

$$
=625
$$

$\because A B^{2}+A E^{2}=B E^{2}$
$\therefore \triangle A B E$ is a right-angled triangle.
14. (a) Note that $p(2)=152+4 a+2 b+c$ and $p(-2)=40+4 a-2 b+c$

Since $p(2)=p(-2)$, we have $b=-28$

$$
\begin{aligned}
& \left(3 x^{2}+5 x+8\right)\left(2 x^{2}+m x+n\right) \\
= & 6 x^{4}+(3 m+10) x^{3}+(3 n+5 m+16) x^{2}+(8 m+5 n) x+8 n
\end{aligned}
$$

By comparing the coefficient of each term, we have $\boldsymbol{l}=\mathbf{3}$
$3 m+10=7$ and $8 m+5 n=-28$
Solving, we have $\boldsymbol{m}=-\mathbf{1}$ and $\boldsymbol{n}=\mathbf{- 4}$
(b)

$$
\begin{aligned}
& \left(3 x^{2}+5 x+8\right)\left(2 x^{2}-x-4\right)=0 \\
& 3 x^{2}+5 x+8=0 \text { and } 2 x^{2}-x-4=0 \\
& \Delta=5^{2}-4(3)(8) \\
& \quad=-\mathbf{7 1} \\
& \quad<0 \\
& \therefore \mathbf{3} \boldsymbol{x}^{2}+\mathbf{5 x}+\mathbf{8}=\mathbf{0} \text { has no real roots. } \\
& \Delta=(-1)^{2}-4(2)(-4) \\
& \quad=33>0 \\
& \therefore 2 x^{2}-x-4=0 \text { has } 2 \text { unequal real roots. } \\
& \therefore p(x) \text { has } \mathbf{2} \text { unequal real roots. }
\end{aligned}
$$

Section B

15. The required probability

$$
\begin{aligned}
& =\frac{C_{4}^{6} 4!5!}{(4+5)!} \\
& =\frac{\mathbf{5}}{\mathbf{4 2}}
\end{aligned}
$$

16. Let σ marks be the standard derivation

$$
\begin{aligned}
\frac{22-61}{\sigma} & =-2.6 \\
\sigma & =15
\end{aligned}
$$

Score of Mary
$=61+1.4 \sigma$
$=82$ marks
Difference between the score of Mary and that of Albert
$=82-22$
$=60$
>59
Note that the range of the distribution must be at least 60 .
\therefore The claim is disagreed.
17. (a) Let d be the common difference of the sequence.

$$
\begin{align*}
555 & =666+(38-1) d \\
\boldsymbol{d} & =-3 \tag{2}
\end{align*}
$$

(b) $\frac{n}{2}(2(666)+(n-1)(-3))>0$
$1335 n-3 n^{2}>0$

$$
0<n<445
$$

\therefore The greatest value of \boldsymbol{n} is 444 .
18. (a) $f(x)$
$=-\frac{1}{3} x^{2}+12 x-121$
$=-\frac{1}{3}\left(x^{2}-36 x+18^{2}-18^{2}\right)-121$
$=-\frac{1}{3}(x-18)^{2}-13$
\therefore The coordinates of the vertex is $(18,-13)$
(b) $\quad g(x)$
$=f(x)+13$
$=-\frac{1}{3}(x-18)^{2}$
(c) Note that $-\frac{1}{3} x^{2}-12 x-121=f(-x)$
$\therefore f(x)$ is reflected along the \boldsymbol{y}-axis.

HKDSE Mathematics 2016 Core Paper 1 - Suggested Solution
19. (a) By sine formula, we have

$$
\begin{aligned}
& \frac{A B}{\sin \angle A D B}=\frac{B D}{\sin \angle B A D} \\
& \angle A D B=41.68560132^{\circ} \text { or } 138.3143987^{\circ} \text { (rejected) } \\
& \angle A B D=180^{\circ}-\angle B A D-\angle A D B \\
& =52.31439868^{\circ} \\
& =\mathbf{5 2 . 3}{ }^{\circ}
\end{aligned}
$$

By cosine formula, we have
$C D^{2}=B C^{2}+B D^{2}-2(B C)(B D) \cos \angle C B D$
$C D^{2}=8^{2}+15^{2}-2(8)(15) \cos 43^{\circ}$
$C D=10.65246974$
$C D=10.7 \mathrm{~cm}$
(b) Since $A C^{2}+B C^{2}=A B^{2}$,
we have $\angle A C E=90^{\circ}$.

By cosine formula, we have
$A D^{2}=A B^{2}+B D^{2}-2(A B)(B D) \cos \angle A B D$
$A D^{2}=10^{2}+15^{2}-2(10)(15) \cos 52.31439868^{\circ}$
$A D=11.89964475$

By cosine formula, we have

$$
\begin{aligned}
A D^{2} & =A C^{2}+C D^{2}-2(A C)(C D) \cos \angle A C D \\
\cos \angle A C D & =\frac{6^{2}+(10.65246974)^{2}-(11.89964475)^{2}}{2(6)(10.65246794)} \\
\angle A C D & =86.46867599^{\circ}
\end{aligned}
$$

$\therefore \angle A C D$ is not a right angle.
\therefore The angle between $A B$ and the face $B C D$ is not $\angle A B C$.
\therefore The claim is disagreed.
20. (a) Note that J is the center of circle $O P Q$
$\angle I P O=\angle I P Q$

Also note that P, I and J are collinear.

$$
\begin{aligned}
\angle J P O & =\angle J P Q & & \\
J O & =J P & & \text { (radii) } \\
\angle J O P & =\angle J P O & & \text { (base } \angle \mathrm{s}, \text { isos. } \Delta) \\
J P & =J Q & & \text { (radii) } \\
\angle J P Q & =\angle J Q P & & \text { (base } \angle \mathrm{s}, \text { isos. } \Delta) \\
\angle J O P & =\angle J Q P & & \\
J P & =J P & & \text { (common sides) } \\
\Delta J O P & \cong \Delta J Q P & & \text { (corr. sides, } \cong \Delta) \\
\therefore O P & =P Q & & \text {) }
\end{aligned}
$$

(b) (i) Let $(h, 19)$ be the coordinate of P.

By (a), we have $h^{2}+19^{2}=(40-h)^{2}+(30-19)^{2}$
Solving, we have $h=17$
Let $x^{2}+y^{2}+D x+E y+F=0$ be the equation of C
Put (0,0), we have $\boldsymbol{F}=\mathbf{0}$
Put $(40,30)$ and $(17,19)$ into C, we have
$17 D+19 E+650=0$ and $40 D+30 E+2500=0$
Solving, we have $\boldsymbol{D}=\mathbf{- 1 1 2}$ and $\boldsymbol{E}=\mathbf{6 6}$
\therefore The equation of C is $x^{2}+y^{2}-112 x+66 y=0$
(ii) Note that the equations of L_{1} and L_{2} are in the form of $y=\frac{3}{4} x+c$

Put $y=\frac{3}{4} x+c$ into C, we have

$$
x^{2}+\left(\frac{3}{4} x+c\right)^{2}-112 x+66\left(\frac{3}{4} x+c\right)=0
$$

$25 x^{2}+(24 c-1000) x+16 c^{2}+1056 c=0$
Since L_{1} and L_{2} are the tangent of C, we have

$$
\begin{aligned}
& \Delta=(24 c-1000)^{2}-4(25)\left(16 c^{2}+1056 c\right)=0 \\
& c=\frac{25}{4} \text { or }-\frac{625}{4}
\end{aligned}
$$

So, the equation of L_{1} and L_{2} are $y=\frac{3}{4} x+\frac{25}{4}$ and $y=\frac{3}{4} x-\frac{625}{4}$ respectively.

HKDSE Mathematics 2016 Core Paper 1 - Suggested Solution

Note that the coordinates of S, T, U and V are $\left(-\frac{25}{3}, 0\right),\left(0, \frac{25}{4}\right)$, $\left(\frac{625}{4}, 0\right)$ and $\left(0,-\frac{625}{4}\right)$ respectively.

The area of trapezium STUV
$=\frac{1}{2}\left(\left(\frac{625}{3}\right)\left(\frac{625}{4}\right)+\left(\frac{625}{4}\right)\left(\frac{25}{3}\right)+\left(\frac{25}{3}\right)\left(\frac{25}{4}\right)+\left(\frac{25}{4}\right)\left(\frac{625}{3}\right)\right)$
$=\frac{105625}{6}$
$=17604.16666$
>17000
\therefore The claim is agreed.

