See	ction A(1)	[35]
1.	$\frac{(x^8y^7)^2}{x^5y^{-6}}$	
	$=\frac{x-y}{x^5y^{-6}}$	
	$= x^{16-5} y^{14-(-6)} - x^{11} y^{20}$	[3]
•		
2.	Ax = (4x + B)C	
	Ax = 4Cx + DC	
	Ax - 4Cx = BC $(A - 4C)x = BC$	
	BC	
	$x=\frac{1}{A-4C}$	[3]
3.	$\frac{2}{3}$ + $\frac{3}{3}$	
	4x - 5 + 1 - 6x	
	$=\frac{2(1-6x)+3(4x-5)}{(4x-5)(1-6x)}$	
	$\frac{2 - 12x + 12x - 15}{2 - 12x + 12x - 15}$	
	$\frac{-(4x-5)(1-6x)}{13}$	
	$=-\frac{10}{(4x-5)(6x-1)}$	
	13	
	(4x-5)(6x-1)	[3]
4.	(a) $5m - 10n$	
	=5(m-2n)	[1]
	(b) $m^2 + mn - 6n^2$	543
	=(m+3n)(m-2n)	[1]
	(c) $m^2 + mn - 6n^2 - 5m + 10n$	
	= (m + 3n)(m - 2n) - 5(m - 2n)	
	= (m-2n)(m+3n-5)	[2]
5.	Let 1.4y and y be the number of male members and female	
	members respectively.	
	1.4y + y = 180	
	y = 75	
	\therefore The required difference = $1.4(75) - 75$	
	= 30	[4]

MATHCONCEPT education © copyright

DSE.Math.Core.2016.Paper.1_Suggested.Solution_1/9

6	(a)	r + 6 < 6(r + 1)	
	(u)	x + 6 < 6x + 66	
		-5x < 60	
		x > -12 $\therefore x > -12 \text{ or } x < -5$	
			[2]
		\therefore The solution is all real numbers.	[3]
	(b)	-1	[1]
7.	(a)	$\angle AOB$	
		$= 135^{\circ} - 75^{\circ}$	F41
		$= 60^{\circ}$	[1]
	(b)	Since $AO = BO$, we have $\angle OAB = \angle OBA$	
		Note that $\angle OAB + \angle OBA + 60^\circ = 180^\circ$ $\therefore \angle OAB = \angle OBA = 60^\circ$	
		$\therefore \Delta AOB$ is an equilateral triangle.	
		The required perimeter	
		= 3(12)	
		= 36	[2]
	(c)	3	[1]
8.	(a)	Let $f(x) = hx + kx^2$	
		$ \frac{3h + 9k = 48}{9h + 81k = 198} $	
		Solving, we have $h = 13$ and $k = 1$	
		$\therefore f(x) = 13x + x^2$	[3]
	(b)	f(x) = 90	
	(~)	$13x + x^2 = 90$	
		$\frac{x^2 + 13x - 90}{(x - 5)(x + 10)} = 0$	
		(x-5)(x+18) = 0 x = 5 or x = -18	
			[2]
9.	(a)	x = 2 + 4 = 6	
		y = 37 - 15 = 22	
		z = 37 + 3 = 40	[3]
	(b)	The required probability	
		$=\frac{22-6}{2}$	
		<u>40</u> 2	
		$=\frac{1}{5}$	[2]

Sec	Section A(2) [35]					
10.	(a)) Let (x, y) be the coordinate of <i>P</i> .				
		$\sqrt{(x-5)^2 + (y-7)^2} = \sqrt{(x-13)^2 + (y-1)^2}$				
		4x - 3y - 24 = 0				
		\therefore The equation of Γ is $4x - 3y - 24 = 0$	[2]			
	(b)	Put $y = 0$ into $4x - 3y - 24 = 0$, we have $x = 6$				
		\therefore H (6, 0)				
		Put $x = 0$ into $4x - 3y - 24 = 0$, we have $y = -8$				
		$\therefore K(0,-8)$				
		Diameter of C				
		= HK				
		$=\sqrt{(6-0)^2 + (0-(-8))^2}$				
		= 10				
		Circumference of <i>C</i>				
		$=10\pi$				
		= 31.416				
		> 30				
		∴ The claim is agreed.	[3]			
11.	(a)	Let $V \text{ cm}^3$ be the required volume.				
		$\frac{V - 444\pi}{V} = \left(\frac{12}{16}\right)^3$				
		$V = 768\pi$				
		\therefore The required volume is 768 π cm ³	[3]			
	(b)	Let r cm be the radius of the wet curved surface.				
		$\frac{1}{3}\pi r^2(16) = 768\pi$				
		r = 12				
		The final area of the we curved surface				
		$= \pi(12)\sqrt{12^2 + 16^2}$				
		= 753.9822369				
		$< 800 \text{ cm}^2$				
		The claim is disagreed.	[3]			

12.	(a)	<mark>11 +</mark>	-a = 11 + b + 4				
			a = b + 4				
		Note	Note that $a > 11$ and $4 < b < 10$				
		∴ {	$\therefore \begin{cases} a = 12 \\ b = 8 \end{cases} \text{ or } \begin{cases} a = 13 \\ b = 9 \end{cases}$				
	(b)	(i)	When the ages of the children are 7, 8, 9	and 10,			
			the median is the greatest.				
			The greatest possible median $= 8$		[2]		
		(ii)	When the ages of the children are 6, 7, 8	and 9, the mean is the smallest.			
			By (a), there are 2 cases.				
			Case 1: $a = 12$ and $b = 8$				
			The mean = $\frac{12(6)+13(7)+12(8)+9(9)+4(10)}{12+13+12+9+4}$ =	= 7.6			
			Case 2: $a = 13$ and $b = 9$				
			The mean = $\frac{12(6)+14(7)+12(8)+10(9)+4(10)}{12+14+12+10+4}$	= 7.61538			
			\therefore The least possible mean is 7.6		[2]		
13.	(a)	In Δ.	ACD and ΔABE ,				
		∠AD	$C = \angle AEB$	(given)			
		AD :	= AE	(side opp. equal \angle s)			
		CE =	= BD	(given)			
		CE -	DE = BD + DE				
			CD = BE				
		ΔAC	$D \cong \Delta ABE$	(SAS)	[2]		
	(b) (i) Note that $DM = EM = 9$ cm and $\angle AMD = \angle AME = 90^{\circ}$			$= \angle AME = 90^{\circ}$			
			AM				
			$= \sqrt{AD^2 - DM^2}$				
			$=\sqrt{144}$				
			= 12 cm		[2]		

		(ii) AB^{2} $= AM^{2} + BM^{2}$ $= 144 + 16^{2}$ = 400 By (a), we have $AE = AD = 15 \text{ cm}$ $AB^{2} + AE^{2}$ $= 400 + 15^{2}$ = 625 BE^{2} $= (BD + DE)^{2}$ $= (7 + 18)^{2}$ = 625	
		$\therefore \frac{AB^2 + AE^2}{ABE} = \frac{BE^2}{BEE}$ $\therefore \Delta ABE \text{ is a right-angled triangle.}$	[3]
14.	(a)	Note that $p(2) = 152 + 4a + 2b + c$ and $p(-2) = 40 + 4a - 2b + c$ Since $p(2) = p(-2)$, we have $b = -28$ $(3x^2 + 5x + 8)(2x^2 + mx + n)$ $= 6x^4 + (3m + 10)x^3 + (3n + 5m + 16)x^2 + (8m + 5n)x + 8n$ By comparing the coefficient of each term, we have $l = 3$	
		3m + 10 = 7 and $8m + 5n = -28Solving, we have m = -1 and n = -4$	[5]
	(b)	p(x) = 0 (3x ² + 5x + 8)(2x ² - x - 4) = 0 3x ² + 5x + 8 = 0 and 2x ² - x - 4 = 0 $\Delta = 5^{2} - 4(3)(8)$ = -71 < 0 $\therefore 3x^{2} + 5x + 8 = 0 \text{ has no real roots.}$ $\Delta = (-1)^{2} - 4(2)(-4)$ = 33 > 0 $\therefore 2x^{2} - x - 4 = 0 \text{ has 2 unequal real roots}$	
		$\therefore p(x)$ has 2 unequal real roots.	[5]
Sec	tion	В	[35]
15.	TI $= \frac{C}{(4)}$ $= \frac{5}{42}$	the required probability $\frac{7^{4}}{4}$ + 5)! $\frac{1}{2}$	[3]

16.	Let -	σ marks be the standard derivation			
	$\frac{22-01}{\sigma} = -2.6$				
	$\sigma = 15$ Score of Mary				
	Score of Mary = $61 + 1.4\sigma$				
	$= 61 + 1.4\sigma$ $= 82 \text{ marks}$				
	Difference between the score of Mary and that of Albert				
	= 82 - 22				
	= 60				
	> 5	9			
	Note	e that the range of the distribution must be at least 60.			
		The claim is disagreed.	[3]		
17.	(a)	Let <i>d</i> be the common difference of the sequence.			
		555 = 666 + (38 - 1)d			
		d = -3	[2]		
	(b)	$\frac{n}{2} \left(2(666) + (n-1)(-3) \right) > 0$			
		$1335n - 3n^2 > 0$			
		0 < n < 445			
		\therefore The greatest value of <i>n</i> is 444.	[3]		
18.	(a)	f(x)			
		$= -\frac{1}{3}x^2 + 12x - 121$			
		$= -\frac{1}{3}(x^2 - 36x + 18^2 - 18^2) - 121$			
		$= -\frac{1}{3}(x - 18)^2 - 13$			
		. The coordinates of the vertex is (18,-13)	[2]		
	(b)	g(x)			
		= f(x) + 13			
		$=-rac{1}{3}(x-18)^2$	[2]		
	(c)	Note that $-\frac{1}{3}x^2 - 12x - 121 = f(-x)$			
		$\therefore f(x)$ is reflected along the y-axis.	[2]		

МатнСо

education © copyright

DSE.Math.Core.2016.Paper.1_Suggested.Solution_7/9

20.	(a)	Note	e that J is the center of circle OPQ		
		∠IP	$O = \angle IPQ$	(incenter)	
		Also	o note that P , I and J are collinear.		
		∠JP	$O = \angle JPQ$		
		J	O = JP	(radii)	
		∠J0	$P = \angle JPO$	(base \angle s, isos. Δ)	
		J	P = JQ	(radii)	
		∠JP	$Q = \angle JQP$	(base \angle s, isos. Δ)	
		∠J0	$P = \angle JQP$		
		J	P = JP	(common sides)	
		ΔJO	$P \cong \Delta JQP$	(AAS)	
		$\therefore OP = PQ$		(corr. sides, $\cong \Delta$)	[3]
	(b)	(i)	Let $(h, 19)$ be the coordinate of <i>P</i> .		
			By (a), we have $h^2 + 19^2 = (40 - h)^2$	$+(30-19)^2$	
			Solving, we have $h = 17$		
		Let $x^2 + y^2 + Dx + Ey + F = 0$ be the equation of <i>C</i> Put (0,0), we have $F = 0$			
		Put (40, 30) and (17, 19) into <i>C</i> , we have			
			17D + 19E + 650 = 0 and $40D + 30E + 2500 = 0$		
			Solving, we have $D = -112$ and $E = 0$	66	
			\therefore The equation of <i>C</i> is $x^2 + y^2 - 112z$	x + 66y = 0	[4]
		(ii)	Note that the equations of L_1 and L_2 are	in the form of $y = \frac{3}{4}x + c$	
			Put $y = \frac{3}{4}x + c$ into C, we have		
			$\left(\frac{x^{2}}{x^{2}}+\left(\frac{3}{4}x+c\right)^{2}-112x+66\left(\frac{3}{4}x+c\right)^{2}\right)$	c) = 0	
			$25x^2 + (24c - 1000)x + 16c^2 + 105c^2 + 105c^$	6c = 0	
			Since L_1 and L_2 are the tangent of C , w	e have	
			$\Delta = (24c - 1000)^2 - 4(25)(16c^2 + 1)^2$ $c = \frac{25}{1} \text{ or } -\frac{625}{1}$	(056c) = 0	
4 $4So the equation of L and L are 4 = \frac{3}{25} and 4 = \frac{1}{25}$		$r + \frac{25}{2}$ and $v = \frac{3}{2}r - \frac{625}{2}$			
			so, the equation of L_1 and L_2 are $y = \frac{1}{4}$.	4 4 4 4	
			respectively.		

