1. $\frac{m^{9}}{\left(m^{3} n^{-7}\right)^{5}}$
$=\frac{m^{9}}{m^{15} n^{-35}}$
$=\frac{n^{35}}{m^{15-9}}$
$=\frac{n^{35}}{m^{6}}$
2. $\frac{4 a+5 b-7}{b}=8$
$4 a+5 b-7=8 b$

$$
-3 b=7-4 a
$$

$$
b=\frac{4 a-7}{3}
$$

3. The required probability

$$
\begin{aligned}
& =\frac{3+2+1}{4 \times 5} \\
& =\frac{\mathbf{3}}{\mathbf{1 0}}
\end{aligned}
$$

4. (a) $x^{3}+x^{2} y-7 x^{2}$

$$
\begin{equation*}
=x^{2}(x+y-7) \tag{1}
\end{equation*}
$$

(b) $x^{3}+x^{2} y-7 x^{2}-x-y+7$
$=x^{2}(x+y-7)-(x+y-7)$
$=(x+y-7)\left(x^{2}-1\right)$
$=(x-1)(x+1)(x+y-7)$
5. (a) $\frac{(7-3 x)}{5} \leq 2(x+2)$
$7-3 x \leq 10 x+20$

$$
x \geq-1
$$

$4 x-13>0$ $x>\frac{13}{4}$
\therefore the required solution is $x>\frac{13}{4}$
(b) 4
6. (a) The selling price of the book.

$$
\begin{aligned}
& =250(1+20 \%) \\
& =\$ 300
\end{aligned}
$$

\therefore The selling price of the book is $\mathbf{\$ 3 0 0}$

HKDSE Mathematics 2015 Core Paper 1-Suggested Solution

(b) Let $\$ x$ be the marked price of the book.

$$
\begin{aligned}
(1-25 \%) x & =300 \\
x & =400
\end{aligned}
$$

\therefore The marked price of the book is $\$ 400$
7. Let a and b be the number of apples owned by Ada and Billy respectively.
$\{a=4 b$
$\{a-12=b+12$
Solving, $a=32$ and $b=8$
\therefore The total number of apples owned by them is 40 .
8. $\angle C A D=\angle C B D=25^{\circ}$
$\because A B=A D$
$\therefore \angle B A D=180^{\circ}-2 \times 58^{\circ}=64^{\circ}$
$\angle B D C=\angle B A C=64^{\circ}-25^{\circ}=39^{\circ}$
$\because B C=C E$
$\therefore \angle B E C=\frac{180^{\circ}-58^{\circ}}{2}=61^{\circ}$
$\angle A B E=61^{\circ}-\angle B A E=22^{\circ}$
9. (a) Let x° be the required angle.

$$
\begin{aligned}
\pi \times 12^{2} \times \frac{x}{360^{\circ}} & =30^{\circ} \\
x & =75
\end{aligned}
$$

\therefore The angle of the sector is $\mathbf{7 5}^{\circ}$.
(b) The required perimeter

$$
\begin{aligned}
& =2 \pi(12)\left(\frac{75}{360}\right)+2 \times 12 \\
& =(\mathbf{2 4}+\mathbf{5 \pi}) \mathrm{cm}
\end{aligned}
$$

Section A(2)

10. (a) Let $S=a+b n$
$\left\{\begin{array}{l}a+10 b=10600 \\ a+6 b=9000\end{array}\right.$
Solving, we have $a=6600$ and $b=400$
\therefore The required income $=\mathbf{6 6 0 0}+\mathbf{2 0} \times \mathbf{4 0 0}=\$ 14600$

HKDSE Mathematics 2015 Core Paper 1-Suggested Solution

(b) Let N be the number of handbags sold in a month such that her income is $\$ 18000$.
$N=\frac{18000-6600}{400}=28.5$
$\because 28.5$ is not an integer
\therefore It is not possible that the income is $\mathbf{\$ 1 8 0 0 0}$.
11. (a) $f(2)=(2-2)^{2}(2+h)+k=-5$
$f(3)=(3-2)^{2}(3+h)+k=0$
Solving, we have $\boldsymbol{h}=2$ and $\boldsymbol{k}=-5$
(b)

$$
f(x)=0
$$

$(x-2)^{2}(x+2)-5=0$
$x^{3}-2 x^{2}-4 x+3=0$
$(x-3)\left(x^{2}+x-1\right)=0$

$$
x=3 \text { or } x=\frac{-1 \pm \sqrt{5}}{2}
$$

Note that $\frac{-1 \pm \sqrt{5}}{2}$ are not integers.
\therefore Not all the roots of $f(x)=0$ are integers.
\therefore The claim is disagreed.
12. (a) Mean $=\mathbf{5 5} \mathbf{~ k g}$

Median $=\mathbf{5 2} \mathbf{k g}$
Range $=79-40$

$$
\begin{equation*}
=39 \mathrm{~kg} \tag{3}
\end{equation*}
$$

(b) Let a and b be the required weights.

$$
\begin{aligned}
\frac{a+b+55 \times 20}{22} & =56 \\
a+b & =132
\end{aligned}
$$

Note that $a=80 \mathrm{~kg}$ as the range is increased by 1 kg .
\therefore The weight of each of these students is 80 kg and 52 kg .
13. (a) $A F=B F$
$A B=B C$
$\angle A B E=\angle B C F=90^{\circ}$
$\triangle A B E \cong \triangle B C F$
(given)
(properties of square)
(properties of square)
(RHS)
(b) $\mathrm{By}($ a), $\angle A E B=\angle B F C$
$\therefore \angle A E B=90^{\circ}-\angle F B C$
$\therefore \angle B G E$
$=180^{\circ}-\angle G E B-\angle G B E$
$=180-\left(90^{\circ}-\angle G B E\right)-\angle G B E$
$=90^{\circ}$
$\therefore \triangle B G E$ is a right-angled triangle.
(c) Note that $C F=B E=15 \mathrm{~cm}$

$$
B G=\sqrt{15^{2}-9^{2}}=12 \mathrm{~cm}
$$

14. (a) (i) m_{L}

$$
\begin{aligned}
& =-1 \div \frac{-1-23}{4-(-14)} \\
& =\frac{3}{4}
\end{aligned}
$$

The coordinates of midpoint of $P Q$

$$
\begin{aligned}
& =\left(\frac{4-14}{2}, \frac{-1+23}{2}\right) \\
& =(-5,11)
\end{aligned}
$$

The equation of L is

$$
\begin{align*}
y-11 & =\frac{3}{4}(x-(-5)) \\
\mathbf{3 x}-\mathbf{4 y}+\mathbf{5 9} & =\mathbf{0} \tag{3}
\end{align*}
$$

(ii) Centre of $C=\left(h, \frac{3 h+59}{4}\right)$

The required equation is

$$
\begin{align*}
& (\boldsymbol{x}-\boldsymbol{h})^{2}+\left(\boldsymbol{y}-\frac{3 h+59}{4}\right)^{2}=(\boldsymbol{h}-\mathbf{4})^{2}+\left(\frac{3 h+59}{4}-(-\mathbf{1})\right)^{2} \\
& 2 x^{2}-4 x h+2 h^{2}+2 y^{2}-3 h y-59 y+\frac{3481}{8}+\frac{9 h^{2}}{8}+\frac{177}{4} h=\frac{25 h^{2}}{8}+\frac{125}{4} h+\frac{4225}{8} \\
& 2 x^{2}+2 y^{2}-4 h x-(3 h+59) y+13 h-93=0 \tag{3}
\end{align*}
$$

(b) Put $(26,43)$ into the equation of C, we have $h=11$

Centre of $C=(11,23)$
The required diameter
$=2 \sqrt{(11-4)^{2}+(23-(-1))^{2}}$
$=\mathbf{5 0}$

Section B

15. (a) Let x marks be the required score.

$$
\begin{aligned}
\frac{x-66}{12} & =-0.5 \\
x & =60
\end{aligned}
$$

The score of David in the Mathematics examination is $\mathbf{6 0}$ marks.
(b) Note that $60=66-0.5 \times 12$ and $49=52-0.3 \times 10$

Since $-0.3>-0.5$,
he performs better in the Science examination than in the
mathematics examination.
\therefore The claim is agreed.
16. (a) The required probability
$=\frac{C_{2}^{5} C_{2}^{9}}{C_{4}^{14}}$
$=\frac{\mathbf{3 6 0}}{\mathbf{1 0 0 1}}$
(b) The required probability
$=1-\frac{C_{1}^{5} C_{3}^{9}+C_{0}^{5} C_{4}^{9}}{C_{4}^{14}}$
$=\frac{5}{11}$
17. (a) $A(1)+A(2)+A(3)+\cdots+A(n)$

$$
\begin{align*}
& =\frac{n}{2}(-1+(4 n-5)) \\
& =\mathbf{2} \boldsymbol{n}^{2}-\mathbf{3 n} \tag{2}
\end{align*}
$$

(b) $\quad \log (B(1) B(2) B(3) \cdots B(n))$
$=\log \left(10^{A(1)+A(2)+A(3)+\cdots+A(n)}\right)$
$=\log \left(10^{2 n^{2}-3 n}\right)$
$=2 n^{2}-3 n$

$$
\begin{aligned}
2 n^{2}-3 n & \geq 8000 \\
2 n^{2}-3 n-8000 & \geq 0 \\
-\frac{125}{2} \leq n & \leq 64
\end{aligned}
$$

\therefore The greatest value of \boldsymbol{n} is 64 .

HKDSE Mathematics 2015 Core Paper 1-Suggested Solution

18. (a) $\Delta=(-4 k)^{2}-4(2)\left(3 k^{2}+5\right)$
$=-8\left(k^{2}+5\right)$
<0
$\therefore f(x)=0$ does not have real roots
\therefore The graph of $\boldsymbol{y}=f(x)$ does not cut the x-axis.
(b) $2 x^{2}-4 k x+3 k^{2}+5$
$=2\left(x^{2}-2 k x+k^{2}\right)+k^{2}+5$
$=2(x-k)^{2}+k^{2}+5$
\therefore The coordinates of the vertex is $\left(\boldsymbol{k}, \boldsymbol{k}^{2}+\mathbf{5}\right)$
(c) Note that when S and T are nearest to each other, they coincide with the vertices of the graphs of $y=f(x)$ and $y=2-f(x)$ respectively.
$\therefore S\left(k, k^{2}+5\right)$ and $T\left(k,-k^{2}-3\right)$
The y-coordinate of the midpoint of $S T$
$=\frac{k^{2}+5-k^{2}-3}{2}$
$=1$
\therefore The perpendicular bisector of $S T$ is $y=1$
\therefore The claim is disagreed.
19. (a) (i) $A C^{2}=40^{2}+24^{2}-2(40)(24) \cos 80^{\circ}$

$$
\begin{align*}
& A C=42.92546446 \\
& \boldsymbol{A C}=42.9 \mathrm{~cm} \tag{2}
\end{align*}
$$

(ii) $\quad \cos \angle A C B=\frac{24^{2}+42.92546446^{2}-40^{2}}{2(24)(42.92546446)}$

$$
\angle A C B=66.59081487^{\circ}
$$

$$
\begin{equation*}
\angle A C B=66.6^{\circ} \tag{1}
\end{equation*}
$$

(iii) Note that the area of $\triangle A B C$ and that of $\triangle A B D$ are fixed.

The area of $\triangle A C D=\frac{1}{2} A C^{2} \sin \angle C A D$
When $\angle B C D$ increases from 105° to 145°,
$\angle C A D$ decreases from 103° to 23.2°.
The required area increases when $\angle B C D$ increases from 105° to 111.6° but decreases when it increases from 111.6° to 145°.

HKDSE Mathematics 2015 Core Paper 1-Suggested Solution

(b) Let M be the projection of B onto $C D$ and N be that of B onto the plane $A C D$
$C M=A C \cos \angle A C D=17.86278929 \mathrm{~cm}$
$B M=\sqrt{B C^{2}-C M^{2}}=16.02874788 \mathrm{~cm}$
$A M=\sqrt{A C^{2}-C M^{2}}=39.03224638 \mathrm{~cm}$
By Heron's formula,
The area of $\triangle A B M=309.5495007 \mathrm{~cm}^{2}$

$$
\begin{aligned}
\frac{B N \times A M}{2} & =309.5495007 \\
\boldsymbol{B N} & =\mathbf{1 5 . 8 6 1 2 1 8 8 3} \mathbf{~ c m}
\end{aligned}
$$

The required volume
$=\frac{1}{3} \times\left(\frac{1}{2}(A C)^{2} \sin \angle C A D\right) \times B N$
$=3690 \mathrm{~cm}^{3}$
\therefore The required volume is $3690 \mathrm{~cm}^{3}$.

