Sect	tion A	A(1)	[35]
1.	$=\frac{1}{m}$	$\frac{m^9}{n^3 n^{-7})^5} \\ \frac{m^9}{n^{35}} \\ \frac{n^{35}}{n^{35}} \\ \frac{15-9}{35} \\ \frac{15}{15-9} \\ \frac{35}{15-9} \\ \frac{15}{15-9} \\ \frac{15}{15-$	[3]
2.	4a + <mark>4a +</mark>	$\frac{+5b-7}{b} = 8$ + 5b-7 = 8b -3b = 7 - 4a $b = \frac{4a-7}{3}$	[3]
3.	3	the required probability $\frac{+2+1}{4 \times 5}$	[3]
4.		$x^{3} + x^{2}y - 7x^{2}$ = $x^{2}(x + y - 7)$	[1]
	(b)	$x^{3} + x^{2}y - 7x^{2} - x - y + 7$ = $x^{2}(x + y - 7) - (x + y - 7)$ = $(x + y - 7)(x^{2} - 1)$ = $(x - 1)(x + 1)(x + y - 7)$	[3]
5.	(a)	$\frac{(7-3x)}{5} \le 2(x+2)$ $7-3x \le 10x+20$ $x \ge -1$ 4x-13 > 0 $x > \frac{13}{4}$	
		\therefore the required solution is $x > \frac{13}{4}$	[3]
	(b)	4	[1]
6.	(a)	The selling price of the book. = $250(1 + 20\%)$ = \$300	
		∴The selling price of the book is \$300	[2]

MATHCONCEPT education © copyright

DSE.Math.Core.2015.Paper.1_Suggested.Solution_1/7

	(b)	Let \$x be the marked price of the book. (1-25%)x = 300 x = 400	
		x = 400 \therefore The marked price of the book is \$400	[2]
7.		a and b be the number of apples owned by Ada and Billy respectively.	
	$\begin{cases} a = \\ a = \end{cases}$	= 4b - 12 = b + 12	
	Solv	ing, $a = 32$ and $b = 8$	
	∴ т	he total number of apples owned by them is 40.	[4]
8.	<mark>∠CA</mark>	$D = \angle CBD = 25^{\circ}$	
	∵ AE	B = AD	
		$BAD = 180^{\circ} - 2 \times 58^{\circ} = 64^{\circ}$	
		$DC = \angle BAC = 64^\circ - 25^\circ = 39^\circ$	
		C = CE	
	∴ <mark>∠</mark> I	$BEC = \frac{180^\circ - 58^\circ}{2} = 61^\circ$	
	∠AB	$E = 61^\circ - \angle BAE = 22^\circ$	[5]
9.	(a)	Let x° be the required angle.	
		$\pi \times 12^2 \times \frac{x}{360^\circ} = 30^\circ$	
		x = 75	
		\therefore The angle of the sector is 75° .	[3]
	(b)	The required perimeter	
		$= 2\pi(12)\left(\frac{75}{360}\right) + 2 \times 12$	
		$= (24 + 5\pi)$ cm	[3]
Sec	tion A	A(2)	[35]
10.	(a)	Let $S = a + bn$	
		$\begin{cases} a+10b = 10600\\ a+6b = 9000 \end{cases}$	
		Solving, we have $a = 6600$ and $b = 400$	
		The required income = $6600 + 20 \times 400 = 14600	[4]

MATH CONCEPT education © copyright

DSE.Math.Core.2015.Paper.1_Suggested.Solution_2/7

	(b)	Let <i>N</i> be the number of handbags sold in a m is \$18000. $N = \frac{18000 - 6600}{400} = 28.5$ $\therefore 28.5 \text{ is not an integer}$	onth such that her income	
		It is not possible that the income is \$180	00.	[2]
11.	(a)	$f(2) = (2-2)^2(2+h) + k = -5$		
		$f(3) = (3-2)^2(3+h) + k = 0$		
		Solving, we have $h = 2$ and $k = -5$		[3]
	(b)	f(x) = 0		
		$(x-2)^2(x+2) - 5 = 0$		
		$x^3 - 2x^2 - 4x + 3 = 0$		
		$(x-3)(x^2 + x - 1) = 0$		
		$x = 3$ or $x = \frac{-1 \pm \sqrt{5}}{2}$		
		Note that $\frac{-1\pm\sqrt{5}}{2}$ are not integers.		
		\therefore Not all the roots of $f(x) = 0$ are integers.		
		∴The claim is disagreed.		[3]
12.	(a)	Mean = 55 kg		
	. ,	Median = 52kg		
		Range $= 79 - 40$		
		= 39kg		[3]
	(b)	Let a and b be the required weights.		
		$\frac{a+b+55\times20}{2}=56$		
		22		
		a + b = 132 Note that $a = 80$ kg as the range is increased	by 1kg	
		. The weight of each of these students is 8		[4]
13.	(a)	AF = BF	(given)	
	• '	AB = BC	(properties of square)	
		$\angle ABE = \angle BCF = 90^{\circ}$	(properties of square)	
		$\Delta ABE \cong \Delta BCF$	(RHS)	[2]
•				1

MATHCONCEPT education © copyright

DSE.Math.Core.2015.Paper.1_Suggested.Solution_3/7

(b) By (a),
$$\angle AEB = \angle BFC$$

 $\therefore \angle AEB = 90^{\circ} - \angle FBC$
 $\therefore \angle BGE$
 $= 180^{\circ} - \angle GBE - \angle GBE$
 $= 90^{\circ}$
 $\therefore \Delta BGE$ is a right-angled triangle. [3]
(c) Note that $\overline{CF} = BE = 15$ cm
 $BG = \sqrt{15^2 - 9^2} = 12$ cm [2]
14. (a) (i) m_L
 $= -1 + \frac{-1 - 23}{4 - (-14)}$
 $= \frac{3}{4}$
The coordinates of midpoint of PQ
 $= (\frac{4 - 14}{2}, -\frac{1 + 23}{2})$
 $= (-5, 11)$
The equation of L is
 $y - 11 = \frac{3}{4}(x - (-5))$
 $3x - 4y + 59 = 0$ [3]
(ii) Centre of $C = (h, \frac{3h + 59}{4})^2 = (h - 4)^2 + (\frac{3h + 59}{4} - (-1))^2$
 $\frac{2x^2 - 4xh + 2h^2 + 2y^2 - 3hy - 59y + \frac{3481}{9} + \frac{9h}{8} + \frac{177}{4}h = \frac{25h^2}{8} + \frac{125}{4}h + \frac{4225}{8}$
 $2x^2 + 2y^2 - 4hx - (3h + 59)y + 13h - 93 = 0$ [3]
(b) Put (26,43) into the equation of C, we have $h = 11$
Centre of $C = (11,23)$
The required diameter
 $= 2\sqrt{(11 - 4)^2 + (23 - (-1))^2}$
 $= 50$ [3]

MATHCONCEPT education © copyright

Sec	Section B [3		[35]
15.	(a)	Let x marks be the required score. x - 66	
		$\frac{x-66}{12} = -0.5$	
		x = 60	[0]
		The score of David in the Mathematics examination is 60 marks.	[2]
	(b)	Note that $\frac{60 = 66 - 0.5 \times 12}{0.5 \times 12}$ and $49 = 52 - 0.3 \times 10$	
		Since $-0.3 > -0.5$, he performs better in the Science examination than in the	
		mathematics examination.	
			[2]
16			[2]
16.	(a)	The required probability $C^{5}C^{9}$	
		$=\frac{C_2 C_2}{C_4^{14}}$	
		$=\frac{360}{1000}$	
		- 1001	[2]
	(b)	The required probability	
		$= 1 - \frac{C_1^5 C_3^9 + C_0^5 C_4^9}{C_4^{14}}$	
		$=\frac{5}{14}$	[2]
			[2]
17.	(a)	$A(1) + A(2) + A(3) + \dots + A(n)$	
		$=\frac{n}{2}(-1+(4n-5))$	[0]
		$=2n^2-3n$	[2]
	(b)	$\log(B(1)B(2)B(3)\cdots B(n))$	
		$= \log(10^{A(1)+A(2)+A(3)+\dots+A(n)})$	
		$= \log(10^{2n^2 - 3n})$	
		$= 2n^2 - 3n$	
		$2n^2 - 3n \ge 8000$ $2n^2 - 3n - 8000 \ge 0$	
		$-\frac{125}{2} \le n \le 64$	
		\therefore The greatest value of n is 64.	[3]

MATHCONCEPT education © copyright

DSE.Math.Core.2015.Paper.1_Suggested.Solution_5/7

18.	(a)	$\Delta = (-4k)^2 - 4(2)(3k^2 + 5)$	
		$= -8(k^2 + 5)$	
		< 0	
		$\therefore f(x) = 0$ does not have real roots	
		\therefore The graph of $y = f(x)$ does not cut the x-axis.	[2]
	(b)	$2x^2 - 4kx + 3k^2 + 5$	
		$= 2(x^2 - 2kx + k^2) + k^2 + 5$	
		$= 2(x-k)^2 + k^2 + 5$	
		\therefore The coordinates of the vertex is $(k, k^2 + 5)$	[3]
	(c)	Note that when S and T are nearest to each other, they coincide with the vertices	
		of the graphs of $y = f(x)$ and $y = 2 - f(x)$ respectively.	
		$\therefore S(k, k^2 + 5)$ and $T(k, -k^2 - 3)$	
		The <i>y</i> -coordinate of the midpoint of <i>ST</i>	
		$=\frac{k^2+5-k^2-3}{2}$	
		=1	
		\therefore The perpendicular bisector of ST is $y = 1$	
		The claim is disagreed.	[4]
19.	(a)	(i) $AC^2 = 40^2 + 24^2 - 2(40)(24)\cos 80^\circ$	
171	(u)	AC = 42.92546446	
		AC = 42.9 cm	[2]
		(ii) $24^2 + 42.92546446^2 - 40^2$	
		(ii) $\cos \angle ACB = \frac{24^2 + 42.92546446^2 - 40^2}{2(24)(42.92546446)}$	
		$\angle ACB = 66.59081487^{\circ}$	
		$\angle ACB = 66.6^{\circ}$	[1]
		(iii) Note that the area of $\triangle ABC$ and that of $\triangle ABD$ are fixed.	
		The area of $\triangle ACD = \frac{1}{2}AC^2 \sin \angle CAD$	
		When $\angle BCD$ increases from 105° to 145° ,	
		$\angle CAD$ decreases from 103° to 23.2°.	
		The required area increases when $\angle BCD$ increases from 105° to 111.6°	
		but decreases when it increases from 111.6° to 145° .	[4]

MATHCONCEPT education © copyright

(b) Let *M* be the projection of *B* onto *CD* and *N* be that of *B* onto the plane *ACD* $CM = AC \cos \angle ACD = 17.86278929 \text{ cm}$ $BM = \sqrt{BC^2 - CM^2} = 16.02874788 \text{ cm}$ $AM = \sqrt{AC^2 - CM^2} = 39.03224638 \text{ cm}$ By Heron's formula, The area of $\triangle ABM = 309.5495007 \text{ cm}^2$ $\frac{BN \times AM}{2} = 309.5495007$ BN = 15.86121883 cmThe required volume $= \frac{1}{3} \times \left(\frac{1}{2}(AC)^2 \sin \angle CAD\right) \times BN$ $= 3690 \text{ cm}^3$ \therefore The required volume is 3690 cm³. [6]

