1. $\frac{\left(x y^{-2}\right)^{3}}{y^{4}}$

$$
=\frac{x^{3} y^{-6}}{y^{4}}
$$

$$
=\frac{x^{3}}{y^{4-(-6)}}
$$

$$
=\frac{x^{3}}{y^{10}}
$$

2. (a) $a^{2}-2 a-3$

$$
=(a+\mathbf{1})(a-3)
$$

(b) $a b^{2}+b^{2}+a^{2}-2 a-3$

$$
=a b^{2}+b^{2}+(a+1)(a-3)
$$

$$
=b^{2}(a+1)+(a+1)(a-3)
$$

$$
\begin{equation*}
=(a+1)\left(b^{2}+a-3\right) \tag{2}
\end{equation*}
$$

3. (a) 200
(b) $\mathbf{1 2 3}$
(c) 123.4
4. $\quad$ The median $=\mathbf{1}$

The mode $=\mathbf{2}$
The standard deviation $=\mathbf{0 . 8 8 9}$
5. (a) $2(3 m+n)=m+7$

$$
\begin{align*}
6 m+2 n & =m+7 \\
\boldsymbol{n} & =\frac{\mathbf{7 - 5 m}}{\mathbf{2}} \tag{2}
\end{align*}
$$

(b) The decrease in the value of $n=5$
6. (a) The selling price of the toy

$$
\begin{aligned}
& =255(1-40 \%) \\
& =\$ \mathbf{1 5 3}
\end{aligned}
$$

(b) Let $\$ x$ be the cost of the toy.

$$
\begin{aligned}
(1+2 \%) x & =153 \\
x & =150
\end{aligned}
$$

$\therefore$ The cost of the toy is $\$ 150$.
7. (a) $\quad f(2)=-33$

$$
4(2)^{2} 3-5(2)^{2} 2-18(2)+c=-33
$$

$$
c=-9
$$

$f(-1)$
$=4(-1)^{3}-5(-1)^{2}-18(-1)-9$
$=0$
$\therefore x+1$ is a factor of $f(x)$.
(b) $\quad f(x)=0$

$$
\begin{gathered}
4 x^{3}-5 x^{2}-18 x-9=0 \\
(x+1)\left(4 x^{2}-9 x-9\right)=0 \\
(x+1)(x-3)(4 x+3)=0 \\
x=-1, x=3 \text { or } x=-\frac{3}{4}
\end{gathered}
$$

Note that $-1,3$ and $-\frac{3}{4}$ are rational numbers.
$\therefore$ The claim is agreed.
8. (a) $P^{\prime}(5,3)$
$Q^{\prime}(-19,-7)$
(b) $\quad m_{P Q}$
$=\frac{5+7}{-3-2}$
$=-\frac{12}{5}$
$m_{P^{\prime} Q^{\prime}}$
$=\frac{3+7}{5+19}$
$=\frac{5}{12}$
$\because m_{P Q} \times \boldsymbol{m}_{P^{\prime} Q^{\prime}}=\mathbf{- 1}$.
$\therefore P Q \perp P^{\prime} Q^{\prime}$.
9. (a) In $\triangle A B C$ and $\triangle B D C$,

| $\angle B A C=\angle D B C$ | (given ) |
| :--- | :--- |
| $\angle A C B=\angle B C D$ | (common $\angle$ ) |
| $\angle A B C=\angle B D C$ | $(\angle$ sum of $\triangle)$ |
| $\triangle A B C \sim \triangle B D C$ | (AAA ) |

## HKDSE Mathematics 2014 Core Paper 1-Suggested Solution

(b) $\quad \mathrm{By}(\mathrm{a}), \frac{C D}{B C}=\frac{B C}{A C}$
$C D=16 \mathrm{~cm}$
$B D^{2}+C D^{2}$
$=12^{2}+16^{2}$
$=20^{2}$
$=B C^{2}$
$\therefore \triangle B C D$ is a right-angled triangle.

## Section A(2)

10. (a) The distance of car A from town X at $8: 15$ in the morning
$=\frac{45}{120}(80)$
$=\mathbf{3 0} \mathbf{~ k m}$
(b) Suppose that car A and car B first meet at the time $t$ minutes after 7:30 in the morning.
$\frac{t}{120}=\frac{44}{80}$
$t=66$
$\therefore$ Car A and car B first meet at 8:36 in the morning.
(c) During the period 8:15 to 9:30 in the morning, car B travels 36 km while car A travels more than 36 km .
$\therefore$ The average speed of car A is greater than that of car B .
$\therefore$ The claim is disagreed.
11. (a) The range $=\mathbf{7 3}$ thousand dollars

The inter-quartile range
$=63-42$
$=21$ thousand dollars
(b) The mean of the prices of the remaining paintings in the art gallery
$=\frac{(33)(53)-32-34-58-59}{33-4}$
$=\frac{1566}{29}$
$=54$ thousand dollars
Note that 32 and 34 are less than 55.
Also note that 58 and 59 are greater than 55 .
The median of the prices of the remaining paintings in the art gallery
= 55 thousand dollars

## HKDSE Mathematics 2014 Core Paper 1-Suggested Solution

12. (a) The radius of $C$
$=\sqrt{(6-0)^{2}+(11-3)^{2}}$
$=10$
$\therefore$ The equation of $C$ is $\boldsymbol{x}^{2}+(y-3)^{2}=\mathbf{1 0}^{\mathbf{2}}$
(b) (i) Let $(x, y)$ be the coordinates of $P$.

$$
\begin{aligned}
& \sqrt{(x-0)^{2}+(y-3)^{2}}=\sqrt{(x-6) 62+(y-11)^{2}} \\
& 3 x+4 y-37=0
\end{aligned}
$$

$\therefore$ The equation of $\Gamma$ is $3 x+4 y-37=0$
(ii) $\Gamma$ is the perpendicular bisector of the line segment $A G$.
(iii) The perimeter of the quadrilateral $A Q G R$

$$
\begin{aligned}
& =4(10) \\
& =40
\end{aligned}
$$

13. (a) Let $f(x)=p x^{2}+q$
$\left\{\begin{array}{c}4 p+q=59 \\ 49 p+q=-121\end{array}\right.$
Solving, we have $\boldsymbol{p}=\mathbf{- 4}$ and $\boldsymbol{q}=\mathbf{7 5}$
$\therefore f(x)=75-4 x^{2}$
$\therefore f(6)=-69$.
(b) By (a), we have $a=-69$.

Since $f(x)=75-4 x^{2}$, we have $f(-6)=f(6)$.
So, we have $b=-69$.
$A B$
$=6-(-6)$
$=12$
The area of $\triangle A B C$
$=\frac{(12)(69)}{2}$
$=414$
14. (a) The slant height of the circular cone
$=\sqrt{72^{2}+96^{2}}$
$=120 \mathrm{~cm}$

## HKDSE Mathematics 2014 Core Paper 1-Suggested Solution

The area of the wet curved surface of the vessel
$=\pi(72)(120) \frac{(96-60+28)^{2}-(96-60)^{2}}{96^{2}}$
$=\pi(72)(120) \frac{64^{2}-36^{2}}{96^{2}}$
$=2625 \pi \mathrm{~cm}^{2}$
(b) The volume of the circular cone
$=\frac{1}{3} \pi(72)^{2}(96)$
$=165888 \pi \mathrm{~cm}^{3}$
The volume of water in the vessel

$$
\begin{aligned}
& =\mathbf{1 6 5 8 8 8} \boldsymbol{\pi}\left(\frac{\left(\mathbf{6 4}^{\mathbf{3}}-\mathbf{3 6}^{\mathbf{3}}\right)}{\mathbf{9 6}^{\mathbf{3}}}\right) \\
& =40404 \pi \mathrm{~cm}^{3} \\
& =0.126932909 \mathrm{~m}^{3} \\
& >0.1 \mathrm{~m}^{3}
\end{aligned}
$$

$\therefore$ The claim is agreed

## Section B

15. $\log _{8} y-0=-\frac{1}{3}\left(\log _{4} x-3\right)$

$$
\begin{aligned}
\log _{8} y & =-\frac{1}{3} \log _{4} x+1 \\
\log _{8} y & =\log _{4} x^{-\frac{1}{3}}+\log _{4} 4 \\
\log _{8} y & =\log _{4} 4 x^{-\frac{1}{3}} \\
\frac{\log _{2} y}{\log _{2} 8} & =\frac{\log _{2} 4 x^{-\frac{1}{3}}}{\log _{2} 4} \\
\log _{2} y & =\frac{3}{2} \log _{2} 4 x^{-\frac{1}{3}} \\
\log _{2} y & =\log _{2} 8 x^{-\frac{1}{2}} \\
y & =8 \boldsymbol{x}^{-\frac{1}{2}}
\end{aligned}
$$

16. Note that the numbers of dots in the patterns form an arithmetic sequence.

The total number of dots in the first $m$ patterns
$=3+5+7+\cdots+(2 m+1)$
$=\frac{m}{2}(3+(2 m+1))$
$=m^{2}+2 m$

## HKDSE Mathematics 2014 Core Paper 1-Suggested Solution

$$
\begin{aligned}
m^{2}+2 m & >6888 \\
m^{2}+2 m-6888 & >0 \\
(m-82)(m+84) & >0 \\
m<-84 \text { or } m & >82
\end{aligned}
$$

$\therefore$ The least value of $m$ is 83 .
17. (a) By sine formula, we have

$$
\begin{aligned}
\frac{\sin \angle A V B}{A B} & =\frac{\sin \angle V A B}{V B} \\
\angle A V B & =34.32008291^{\circ} \\
\angle V B A & =180^{\circ}-110^{\circ}-34.32008291^{\circ} \\
\angle V B A & =35.67991709^{\circ} \\
\angle V B A & =35.7^{\circ}
\end{aligned}
$$

(b) By cosine formula, we have
$M P^{2}=B P^{2}+B M^{2}-2(B P)(B M) \cos \angle V B A$
$M P^{2}=9^{2}+15^{2}-2(9)(15) \cos 35.67991709^{\circ}$
$M P=9.310329519 \mathrm{~cm}$
$M N=\frac{B C}{2}$
$M N=5 \mathrm{~cm}$
Note that $M P=N Q$.
Let $h \mathrm{~cm}$ be the height of the trapezium $P Q N M$.
$h=\sqrt{M P^{2}-\left(\frac{P Q-M N}{2}\right)^{2}}$
$h=\sqrt{9.310329519^{2}-\left(\frac{10-5}{2}\right)^{2}}$
$h=8.968402074$
The area of the trapezium $P Q N M$
$=\frac{h}{2}(M N+P Q)$
$=\frac{(8.968402074)(5+10)}{2}$
$=67.26301555 \mathrm{~cm}^{2}$
$<70 \mathrm{~cm}^{2}$
$\therefore$ The claim is agreed.

## HKDSE Mathematics 2014 Core Paper 1-Suggested Solution

18. (a) $m_{L_{2}}$

$$
\begin{aligned}
& =\frac{90-0}{45-180} \\
& =-\frac{2}{3}
\end{aligned}
$$

The equation of $L_{2}$ is:

$$
y-90=-\frac{2}{3}(x-45)
$$

$2 x+3 y-360=0$
$\therefore$ The system of inequalities is $\left\{\begin{aligned} 6 x+7 y & \leq \mathbf{9 0 0} \\ 2 x+3 y & \leq \mathbf{3 6 0} \\ \boldsymbol{x} & \geq \mathbf{0} \\ y & \geq \mathbf{0}\end{aligned}\right.$
(b) Let $x$ and $y$ be the numbers of wardrobes $X$ and $Y$ produced that month respectively.

Now, the constraints are
$\left\{\begin{array}{l}\mathbf{6 x + 7 y} 5 \mathbf{9 0 0} \\ \mathbf{2 x}+\mathbf{3 y} \leq \mathbf{3 6 0}\end{array}\right.$, where $x$ and $y$ are non-negative integers.
Denote the total profit on the production of wardrobes by $\$ P$.
$P=440 x+665 y$
Note that the vertices of the shaded region in Figure 7 are the points $(0,0),(0,120),(45,90)$ and $(150,0)$.

For $(0,0), P=(440)(0)+(665)(0)=0$.
For $(0,120), P=(440)(0)+(665)(120)=79800$.
For $(45,90), P=(440)(45)+(665)(90)=79650$.
For $(150,0), P=(440)(150)+(665)(0)=66000$.
$\therefore$ The greatest possible total profit is $\$ 79800$.
$\therefore$ The claim is disagreed.
19. (a) The required probability
$=\frac{1}{6}+\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)+\cdots$
$=\frac{\frac{1}{6}}{1-\frac{25}{36}}$
$=\frac{6}{11}$
(b) (i) Suppose that the player of the second round adopts Option 1.

The probability of getting 10 tokens
$=(1)\left(\frac{1}{8}\right)$
$=\frac{1}{8}$
The probability of getting 5 tokens
$=\frac{7\left(P_{2}^{2}\right)}{8^{2}}$
$=\frac{7}{32}$
The expected number of tokens got
$=(10)\left(\frac{1}{8}\right)+(5)\left(\frac{7}{32}\right)$
$=\frac{75}{32}$
(ii) Suppose that the player of the second round adopts Option 2.

The probability of getting 50 tokens
$=(1)\left(\frac{1}{8}\right)\left(\frac{1}{8}\right)$
$=\frac{1}{64}$
The probability of getting 10 tokens
$=\frac{(6)\left(P_{3}^{3}\right)}{8^{3}}$
$=\frac{9}{128}$
The probability of getting 5 tokens
$=(2)\left(\frac{1}{8}\right)^{2}\left(\frac{1}{8}\right)+(6)\left(\frac{1}{8}\right)^{2}\left(\frac{2}{8}\right)+\left(\frac{7}{32}\right)\left(\frac{2}{8}\right)$
$=\frac{21}{256}$
The expected number of tokens got
$=(50)\left(\frac{1}{64}\right)+(10)\left(\frac{9}{128}\right)+(5)\left(\frac{21}{256}\right)$
$=\frac{485}{256}$
Note that $\frac{75}{32}>\frac{485}{256}$
$\therefore$ The player of the second round should adopt Option 1 .

HKDSE Mathematics 2014 Core Paper 1-Suggested Solution
(iii) The probability of Ada getting no tokens
$=1-\left(\frac{6}{11}\right)\left(\frac{1}{8}+\frac{7}{32}\right)$
$=\frac{13}{16}$
$<0.9$
$\therefore$ The claim is incorrect.

