Sec	Section A(1) [35]		[35]
1.	$\frac{y^4}{y^4}$		
	$=\frac{x^{3}y^{6}}{y^{4}}$ $=\frac{x^{3}}{y^{4-(-6)}}$ $=\frac{x^{3}}{y^{10}}$ [
	$=\frac{x}{y^2}$	το	[3]
2.	(a)	$a^2 - 2a - 3$ = $(a + 1)(a - 3)$	[1]
	(b)	$ab^{2} + b^{2} + a^{2} - 2a - 3$ = $ab^{2} + b^{2} + (a + 1)(a - 3)$ = $b^{2}(a + 1) + (a + 1)(a - 3)$	
		$= (a+1)(b^2+a-3)$	[2]
3.	(a)	200	[1]
	(b)	123	[1]
	(c)	123.4	[1]
4.	The	median = 1	
	The	mode = 2	
	The	standard deviation = 0.889	[3]
5.	(a)	2(3m+n) = m+7	
		6m + 2n = m + 7	
		$n = \frac{7-5m}{2}$	[2]
	(b)	The decrease in the value of $n = 5$	[2]
6.	(a)	The selling price of the toy	
		= 255(1 - 40%)	
		= \$153	[2]
	(b)	Let x be the cost of the toy.	
		(1+2%)x = 153	
		x = 150	
		The cost of the toy is \$150.	[2]

MATH CONCEPT education © copyright

DSE.Math.Core.2014.Paper.1_Suggested.Solution_1/9

7.	(a)	f(2) = -33		
		$4(2)^2 3 - 5(2)^2 2 - 18(2) + c = -33$		
		c = -9		
		f(-1)		
		$= 4(-1)^3 - 5(-1)^2 - 18(-1) - 9$		
		= 0		
		$\therefore x + 1$ is a factor of $f(x)$.		[3]
	(b)	f(x) = 0		
		$4x^3 - 5x^2 - 18x - 9 = 0$		
		$(x+1)(4x^2 - 9x - 9) = 0$		
		(x+1)(x-3)(4x+3) = 0		
		$x = -1, x = 3 \text{ or } x = -\frac{3}{4}$		
		Note that -1 , 3 and $-\frac{3}{4}$ are rational numbers		
		. The claim is agreed.		[2]
8.	(a)	<i>P</i> ′ (5,3)		
		Q'(-19,-7)		[2]
	(b)	m_{PQ}		
		$=\frac{5+7}{-3-2}$		
		$=-\frac{12}{5}$		
		$m_{P'O'}$		
		3 + 7		
		$=\frac{1}{5+19}$		
		$=\frac{5}{12}$		
		$\therefore m_{PQ} \times m_{P'Q'} = -1.$		
		$\therefore PQ \perp P'Q' .$		[3]
9.	(a)	In $\triangle ABC$ and $\triangle BDC$,		
		$\angle BAC = \angle DBC$	(given)	
		$\angle ACB = \angle BCD$	(common \angle)	
		$\angle ABC = \angle BDC$	$(\angle \operatorname{sum of} \Delta)$	
		$\Delta ABC \sim \Delta BDC$	(AAA)	[2]
				1

MATHCONCEPT education © copyright

DSE.Math.Core.2014.Paper.1_Suggested.Solution_2/9

	(b)	By (a), $\frac{CD}{BC} = \frac{BC}{AC}$	
		CD = 16 cm	
		$BD^2 + CD^2$	
		$= 12^{2} + 16^{2}$	
		$= 20^2$ $= BC^2$	
		$\therefore \Delta BCD$ is a right-angled triangle.	[3]
Sec	tion A	A(2)	[35]
10.	(a)	The distance of car A from town X at 8:15 in the morning	
		$=\frac{45}{120}(80)$	
		= 30 km	[2]
	(b)	Suppose that car A and car B first meet at the time <i>t</i> minutes after 7:30 in the morning.	
		$\frac{t}{120} = \frac{44}{80}$	
		t = 66	
		Car A and car B first meet at 8:36 in the morning.	[2]
	(c)	During the period 8:15 to 9:30 in the morning, car B travels 36 km while car A travels more than 36 km.	
		\therefore The average speed of car A is greater than that of car B.	
		. The claim is disagreed.	[2]
11.	(a)	The range = 73 thousand dollars	
		The inter-quartile range	
		= 63 - 42	
		= 21 thousand dollars	[2]
	(b)	The mean of the prices of the remaining paintings in the art gallery	
		(33)(53) - 32 - 34 - 58 - 59	
		$=\frac{33-4}{1566}$	
		$=\frac{1303}{29}$	
		= 54 thousand dollars	
		Note that 32 and 34 are less than 55.	
		Also note that 58 and 59 are greater than 55.	
		The median of the prices of the remaining paintings in the art gallery	
		= 55 thousand dollars	[3]

12.	(a)	The radius of <i>C</i>		
		$=\sqrt{(6-0)^2 + (11-3)^2}$		
		= 10		
		: The equation of C is $x^2 + (y - 3)^2 = 10^2$ [2]		
	(b)	(i) Let (x, y) be the coordinates of <i>P</i> .		
		$\sqrt{(x-0)^2 + (y-3)^2} = \sqrt{(x-6)62 + (y-11)^2}$		
		3x + 4y - 37 = 0		
		\therefore The equation of Γ is $3x + 4y - 37 = 0$	[2]	
		(ii) Γ is the perpendicular bisector of the line segment <i>AG</i> .	[1]	
		(iii) The perimeter of the quadrilateral <i>AQGR</i>		
		= 4(10)		
		= 40	[2]	
13.	(a)	Let $f(x) = px^2 + q$		
		$\begin{cases} 4p + q = 59 \\ 49p + q = -121 \end{cases}$		
		Solving, we have $p = -4$ and $q = 75$ $\therefore f(x) = 75 - 4x^2$		
		$\therefore f(6) = -69.$	[4]	
			[4]	
	(b)	By (a), we have $a = -69$. Since $f(x) = 75 - 4x^2$, we have $f(-6) = f(6)$.		
		So, we have $b = -69$.		
		AB		
		= 6 - (-6)		
		= 12		
		The area of $\triangle ABC$		
		$=\frac{(12)(69)}{2}$		
		= 414	E 41	
			[4]	
14.	(a)	The slant height of the circular cone		
		$=\sqrt{72^2+96^2}$		
		= 120 cm		

MATH CONCEPT education © copyright

DSE.Math.Core.2014.Paper.1_Suggested.Solution_4/9

The total number of dots in the first *m* patterns

$$= 3 + 5 + 7 + \dots + (2m + 1)$$
$$= \frac{m}{2} (3 + (2m + 1))$$

$$= m^2 + 2m$$

MATHCONCEPT education © copyright

DSE.Math.Core.2014.Paper.1_Suggested.Solution_5/9

education © copyright DSE.Math.Core.201

18. (a)	m_{L_2}	
100 (u)	-	
	$=\frac{90-0}{45-180}$	
	$=-\frac{2}{3}$	
	The equation of L_2 is:	
	$y - 90 = -\frac{2}{3}(x - 45)$	
	2x + 3y - 360 = 0	
	$\therefore \text{The system of inequalities is} \begin{cases} 6x + 7y \le 900\\ 2x + 3y \le 360\\ x \ge 0\\ y \ge 0 \end{cases}$	[4]
(b)	Let x and y be the numbers of wardrobes X and Y produced that month respectively.	
	Now, the constraints are	
	$\begin{cases} 6x + 7y \le 900 \\ 2x + 3y \le 360 \end{cases}$, where x and y are non-negative integers.	
	Denote the total profit on the production of wardrobes by P .	
	P=440x+665y	
	Note that the vertices of the shaded region in Figure 7 are the points	
	(0,0), $(0,120)$, $(45,90)$ and $(150,0)$.	
	For $(0,0)$, $P = (440)(0) + (665)(0) = 0$.	
	For $(0, 120)$, $P = (440)(0) + (665)(120) = 79800$.	
	For $(45,90)$, $P = (440)(45) + (665)(90) = 79650$.	
	For $(150,0)$, $P = (440)(150) + (665)(0) = 66000$.	
	. The greatest possible total profit is \$79800.	
	The claim is disagreed.	[4]
19. (a)	The required probability	
	$= \frac{1}{6} + \left(\frac{5}{6}\right) \left(\frac{5}{6}\right) \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right) \left(\frac{5}{6}\right) \left(\frac{5}{6}\right) \left(\frac{5}{6}\right) \left(\frac{1}{6}\right) + \cdots$ $= \frac{\frac{1}{6}}{\frac{1}{6}}$	
	$\frac{1-\frac{25}{36}}{6}$	
	$=\frac{1}{11}$	[3]

MATH CONCEPT education © copyright

(b) (i) Suppose that the player of the second round adopts Option I.
The probability of getting 10 tokens

$$= \frac{(1)\left(\frac{1}{8}\right)}{=\frac{1}{8}}$$
The probability of getting 5 tokens

$$= \frac{7(P_{2}^{2})}{\frac{3}{8^{2}}}$$

$$= \frac{7}{32}$$
The expected number of tokens got

$$= (10)\left(\frac{1}{8}\right) + (5)\left(\frac{2}{32}\right)$$

$$= \frac{75}{32}$$
[4]
(ii) Suppose that the player of the second round adopts Option 2.
The probability of getting 50 tokens

$$= (1)\left(\frac{1}{8}\right)\left(\frac{1}{8}\right)$$

$$= \frac{1}{64}$$
The probability of getting 10 tokens

$$= \frac{(6)(P_{2}^{2})}{8^{3}}$$

$$= \frac{9}{128}$$
The probability of getting 5 tokens

$$= (2)\left(\frac{1}{8}\right)^{2}\left(\frac{1}{8}\right) + (6)\left(\frac{1}{8}\right)^{2}\left(\frac{2}{8}\right) + \left(\frac{7}{32}\right)\left(\frac{2}{8}\right)$$

$$= \frac{21}{256}$$
The expected number of tokens got

$$= (50)\left(\frac{1}{64}\right) + (10)\left(\frac{9}{122}\right) + (5)\left(\frac{21}{256}\right)$$

$$= \frac{485}{256}$$
Note that $\frac{72}{82} > \frac{495}{256}$

MATH CONCEPT education © copyright

DSE.Math.Core.2014.Paper.1_Suggested.Solution_8/9

$$= 1 - \left(\frac{6}{11}\right) \left(\frac{1}{8} + \frac{7}{32}\right)$$
$$= \frac{13}{16}$$
$$< 0.9$$
$$\therefore$$
 The claim is incorrect.

[3]

