Sec	tion A(1)	[35]
1.	$\frac{x^{20}y^{13}}{(x^5y)^6}$	
	$= \frac{x^{30}y^{6}}{x^{30-20}}$ $= \frac{y^{13-6}}{x^{30-20}}$ y^{7}	
	$=\frac{y^7}{x^{10}}$	[3]
2.	$\frac{3}{h} - \frac{1}{k} = 2$	
	$\frac{1}{k} = \frac{3}{h} - 2$	
	$\frac{1}{k} = \frac{3-2h}{h}$	
	$k = \frac{h}{3 - 2h}$	[3]
3.	(a) $4m^2 - 25n^2$	
	=(2m-5n)(2m+5n)	[1]
	(b) $4m^2 - 25n^2 + 6m - 15n$	
	= (2m - 5n)(2m + 5n) + 3(2m - 5n)	
	=(2m-5n)(2m+5n+3)	[2]
4.	Let x and y be the prices of a pear and an orange respectively.	
	$\begin{cases} 7x + 3y = 47 \\ 5x + 6y = 49 \end{cases}$	
	Solving, we have $x = 5$ and $y = 4$	
	∴ The required price is \$5	[4]
5.	(a) $\frac{19-7x}{3} > 23-5x$	
	19 - 7x > 69 - 15x -7x + 15x > 69 - 19	
	$x > \frac{25}{4}$	[2]
I		

MATHCONCEPT education © copyright

DSE.Math.Core.2013.Paper.1_Suggested.Solution_1/9

	(b)	$18 - 2x \ge 0$ $x \le 9$			
		By (a), we have $\frac{25}{4} < x \le 9$			
		The required integers are 7,	8 and 9.	[2]	
6.	• (a) $\frac{L}{L}$ is the angle bisector of $\angle AOB$				
	(b)	b) Let $E(r, \theta)$ be the intersection point of L and AB.			
		$\theta = 70^{\circ}$			
		$r = OA \cos \angle EOA$			
		<mark>= (26) cos 60°</mark>			
		= 13			
		The required polar coordinates	s are (13,70°)	[3]	
7.	(a)	$\angle BAC = \angle CDB$	(given)		
		$\angle DBC = \angle ACB$	(base $\angle s$, isos. Δ)		
		BC = CB	(common side)		
		$\Delta ABC \cong \Delta DCB$	(AAS)	[2]	
	(b)	(i) 3 pairs		[1]	
		(ii) 4 pairs		[1]	
8.	(a)	The least possible weight of a r	regular pack of sea salt		
		<mark>= 100 – 0.5</mark>			
		= 99.5 g		[2]	
	(b)	The least possible total weight	of 32 regular packs of sea salt		
		<mark>= (99.5)(32)</mark>			
		= 3184 g			
		= 3.184 kg			
		= 3.2 kg (correct to the nearest 0.	.1kg)		
		> 3.1 kg			
		. The claim is not possible.		[3]	
9.	(a)	The mean = 3 . 5			
		The inter-quartile range $= 4 - 2$	<mark>= 2</mark>		
		The standard derivation $= 1.5$		[4]	

MATHCONCEPT education © copyright

DSE.Math.Core.2013.Paper.1_Suggested.Solution_2/9

	(b)	The new standard deviation $= 1.451456116$				
		The decrease in the standard deviation $= 0.0485$				
Sec	tion A	A(2)	[35]			
10.	(a)	The median= 31				
		The mode= 23	[2]			
	(b)	(i) Note that $0 \le a < 5$ and $7 \le b \le 9$.				
		Also note that the range of the distribution is 47.				
		$\therefore \begin{cases} a = 0 \\ b = 7 \end{cases}, \begin{cases} a = 1 \\ b = 8 \end{cases} \text{ or } \begin{cases} a = 2 \\ b = 9 \end{cases}$	[2]			
		(ii) The required probability				
		$=\frac{3+3+3+3+2+9+9}{2}$				
		260 32				
		$=\frac{32}{260}$				
		$=\frac{8}{65}$	[9]			
			[2]			
11.	(a)	Let $W = hl + kl^2$				
		$ \begin{array}{c} $				
		Solving, we have $h = 161$ and $k = 20$				
		The required weight				
		$= 161(1.2) + 20(1.2^2)$				
		= 222 grams	[4]			
	(b)	$20l^2 + 161l = 594$				
		$20l^2 + 161l - 594 = 0$				
		$l = \frac{11}{4}$ or $l = -\frac{54}{5}$ (rejected)				
		\therefore The perimeter of the tray is $\frac{11}{4}$ m.	[2]			

MATHCONCEPT education © copyright

12.	(a)	By comparing the coefficients of x^3 and the constant terms, we have $a = 3$ and $c = 4$				
		Note that the coefficient of x^2 in the expansion of $(x - 2)(3x^2 + bx + 4)$ is $b - 6$.				
		By comparing the coefficients of x^2 , we have $b - 6 = -7$.				
		$\therefore b = -1$.	[4]			
	(b)					
		= -47 < 0				
		$\therefore \frac{3x^2 - x + 4}{3x^2 - x + 4} = 0$ has no real roots.				
		∴The claim is disagreed.	[3]			
13.	(a)	(i) $\frac{\pi r^2}{\pi R^2} = \frac{1}{9}$ $\frac{r}{R} = \frac{1}{3}$ r: R = 1: 3	[2]			
		(ii) Let h cm be the height of a larger circular cylinder.				
		$2\pi R^2 h = 27(\pi r^2(10))$				
		$h = \frac{270}{2} \left(\frac{r}{R}\right)^2$				
		$h = \frac{270}{2} \left(\frac{1}{3}\right)^2$				
		h = 15				
		\therefore The height of a larger circular cylinder is 15 cm.	[3]			
	(b)	$\frac{r}{R} = \frac{1}{3}$				
		$\frac{h_{\text{smaller cylinder}}}{h_{\text{larger cylinder}}} = \frac{10}{15} = \frac{2}{3}$				
		$\frac{r}{R} \neq \frac{h_{\text{smaller cylinder}}}{h_{\text{larger cylinder}}}$				
		\therefore The two circular cylinders are not similar				
		\therefore The claim is disagreed.	[2]			

14.	(a)	The	coordinates of $R = (6, 17)$	[1]
	(b)	(i)	Let (h, k) be the coordinates of P .	
			Since P lies on L, we have $4h + 3k + 50 = 0$.	
			$\therefore RP \perp L$	
			$\therefore \qquad m_{RP} \times m_L = -1$	
			$\left(\frac{k-17}{h-6}\right)\left(-\frac{4}{3}\right) = -1$	
			3h - 4k + 50 = 0.	
			Solving, we have $h = -14$ and $k = 2$.	
			∴ P (−14, 2)	
			$PR = \sqrt{(-14 - 6)^2 + (2 - 17)^2}$	5.43
			= 25	[4]
		(ii)	(1) P, Q and R are collinear.	[1]
			(2) Note that the radius of the C is 10.	
			QR = 10	
			PQ = 25 - 10 = 15	
			The required ratio	
			= PQ:QR	
			= 15:10	
			= 3 : 2	[3]
Sec	tion]	B		[35]
15.	(a)	Note	e that the highest score of the distribution is 90 marks.	

Let μ marks and σ marks be the mean and the standard deviation of the distribution respectively.

 $\begin{cases} 90 - \mu = 3\sigma \\ 65 - \mu = 0.5\sigma \end{cases}$

MATHCONCEPT

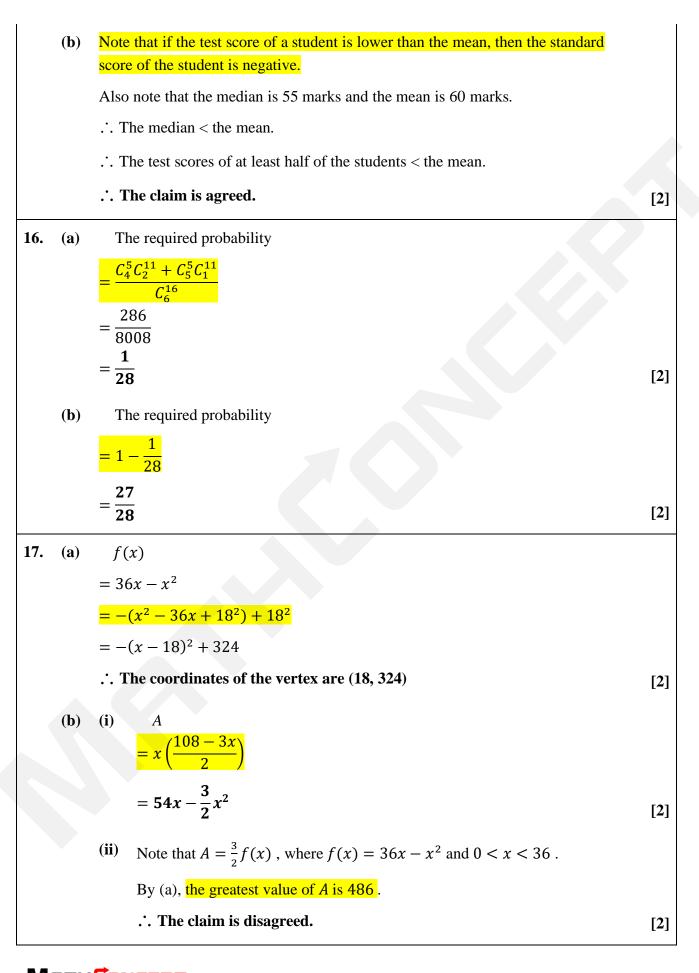
Solving, we have $\mu = 60$.

education © copyright

 \therefore The mean of the distribution is 60 marks.

[2]

DSE.Math.Core.2013.Paper.1_Suggested.Solution_5/9

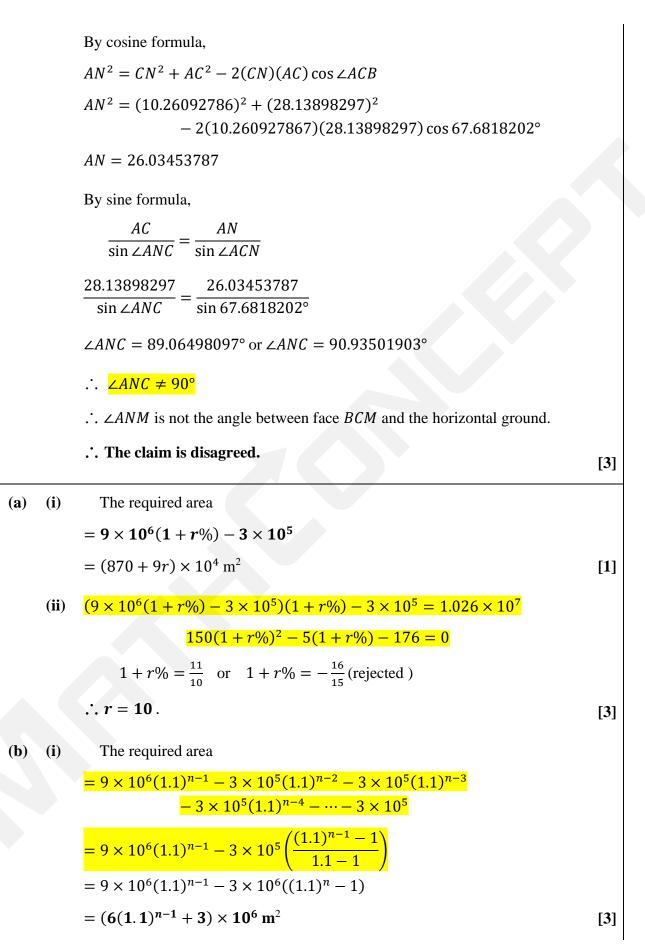


MATHCONCEPT education © copyright

10	(a)	(:)	Note that $ABC = 0.0$		
18.	(a)	(i)	Note that $\angle ABC = 90^{\circ}$ 28		
			$\tan \angle BCM = \frac{28}{21}$		
			$\angle BCM = 53.13010285^{\circ}$		
			$\angle BCM = 53.1^{\circ}$	[1]	
		(ii)	By sine formula,		
			$\frac{CM}{BC} = \frac{BC}{BC}$		
			$\sin \angle MBC = \sin \angle BMC$		
			CM = 17.10154643 cm	[0]	
			CM = 17.1 cm	[2]	
	(b)	(i)	By cosine formula,		
			$AC^2 = AM^2 + CM^2 - 2(AM)(CM) \cos \angle AMC$		
			$AC^2 = (35 - 17.10154643)^2 + (17.10154643)^2$		
			$-2(35 - 17.10154643)(17.10154643)\cos 107^{\circ}$		
			AC = 28.13898297		
			$AC = 28.1 \mathrm{cm}$	[2]	
		(ii)	CN		
			$= CM \cos \angle BCM$		
			= 17.10154643 cos 53.13010235°		
			= 10.26092786 cm		
			By cosine formula,		
			CN		
			$= CM \cos \angle BCM$		
			= 17.10154643 cos 53.13010235°		
			= 10.26092786 cm		
			By cosine formula,		
			$AB^{2} = BC^{2} + AC^{2} - 2(AC)(BC) \cos \angle ACE$		
			$\cos \angle ACB = \frac{21^2 + (28.13898297)^2 - 28^2}{2(28.13898297)(21)}$		
			$\angle ACB = 67.6818202^{\circ}$		

MATHCONCEPT education © copyright

DSE.Math.Core.2013.Paper.1_Suggested.Solution_7/9



MATHCONCEPT education © copyright

19.

DSE.Math.Core.2013.Paper.1_Suggested.Solution_8/9

(ii)
$$(6(1.1)^{n-1} + 3) \times 10^6 > 4 \times 10^7$$

 $(1.1)^{n-1} > \frac{37}{6}$.
 $log(1.1)^{n-1} > log(\frac{37}{6})$.
 $(n-1) log 1.1 > log(\frac{37}{6})$.
 $n > 20.08671715$.
 \therefore The total floor area of all public housing flats will first exceed
 4×10^7 m² at the end of the 21st year. [2]
(c) Note that $a(1.21)^1 + b = 1 \times 10^7$ and $a(1.21)^2 + b = 1.063 \times 10^7$
Solving, we have $a = \frac{300}{121} \times 10^6$ and $b = 7 \times 10^6$.
 $(6(1.1)^{n-1} + 3) \times 10^6 > (\frac{300}{121}(1.21)^n + 7) \times 10^6 \dots (*)$.
 $-\frac{300}{121}(1.21)^n - 7 + 6(1.1)^{n-1} + 3 > 0$
 $75((1.1)^n)^2 - 165(1.1)^n + 121 < 0$
 Δ
 $= (-165)^2 - 4(75)(121)$
 $= -9075$
 < 0
Since 75 > 0, we have $75(((1.1)^n)^2 - 165(1.1)^n + 121 > 0$ for all n .
 \therefore There is no solution for $(*)$.
 \therefore The claim is incorrect. [4]

