HKDSE Mathematics	2012 Co	ore Paper i	1–Suggested	Solution
--------------------------	---------	-------------	-------------	----------

$\frac{m^{-12}n^{8}}{n^{3}} = \frac{m^{8}}{n^{12}}$ $= \frac{n^{5}}{m^{12}}$ (3) $\frac{3a+b}{8} = b-1$ $3a+b=8(b-1)$ $3a+b=8b-8$ $3a=7b-8$ $a = \frac{7b-8}{3}$ (3) (a) $x^{2} - 6xy + 9y^{2}$ $= (x-3y)^{2}$ (b) $x^{2} - 6xy + 9y^{2} + 7x - 21y$ $= (x-3y)^{2} + 7(x-3y)$ $= (x-3y)^{2} + 7(x-3y)$ $= (x-3y)(x-3y+7)$ (c) (a) The daily wage of Ada = 480(1+20%) $= 576 (c) (b) Let \$x\$ be the daily wage of Christine. $x(1-20\%) = 480$ $x = \frac{480}{1-20\%}$ $x = 600$ (c) Let x and $(x + 24)$ be the number of male and female guards respectively. x + (x+24) = 132 $2x = 108$ $x = 54$	Section A(1) [35]			
$\frac{n^{3}}{m^{12}}$ $= \frac{n^{5}}{m^{12}}$ $= \frac{n^{5}}{m^{12}}$ (3) $\frac{3a+b}{8} = b-1$ $3a+b=8(b-1)$ $3a+b=8b-8$ $3a=7b-8$ $a=\frac{7b-8}{a}$ (3) (a) $x^{2}-6xy+9y^{2}$ $= (x-3y)^{2}$ (b) $x^{2}-6xy+9y^{2}+7x-21y$ $= (x-3y)^{2}+7x-21y$ $= (x-3y)^{2}+7(x-3y)$ $= (x-3y)(x-3y+7)$ (c) (a) The daily wage of Ada $= 480(1+20\%)$ $= 576 (c) (b) Let \$x\$ be the daily wage of Christine. $x(1-20\%) = 480$ $x = \frac{480}{1-20\%}$ $x = 600$ \therefore Christine has the highest daily wage. (c) (c) Let \$x\$ and (x + 24) be the number of male and female guards respectively. $x + (x+24) = 132$ $2x = 108$ $x = 54$	1.	$m^{-12}n^8$		
$\frac{m^{12}}{m^{12}}$ $= \frac{m^5}{m^{12}}$ (3) $\frac{3a + b}{8} = b - 1$ $3a + b = 8(b - 1)$ $3a + b = 8b - 8$ $3a = 7b - 8$ $a = \frac{7b - 8}{3}$ (3) (a) $x^2 - 6xy + 9y^2$ $= (x - 3y)^2$ (b) $x^2 - 6xy + 9y^2 + 7x - 21y$ $= (x - 3y)^2 + 7x - 21y$ $= (x - 3y)^2 + 7(x - 3y)$ $= (x - 3y)(x - 3y + 7)$ (c) (d) The daily wage of Ada $= 480(1 + 20\%)$ $= \$576$ (c) (b) Let \$x\$ be the daily wage of Christine. $x(1 - 20\%) = 480$ $x = \frac{480}{1 - 20\%}$ $x = 600$ (c) Let \$x\$ and (x + 24) be the number of male and female guards respectively. $x + (x + 24) = 132$ $2x = 108$ $x = 54$ (c)		n^{3} n^{8-3}		
$=\frac{n^{5}}{m^{12}}$ (3) $\frac{3a+b}{8}=b-1$ $3a+b=8(b-1)$ $3a+b=8b-8$ $3a=7b-8$ $a=\frac{7b-8}{3}$ (3) (a) $x^{2}-6xy+9y^{2}$ $= (x-3y)^{2}$ (1) (b) $x^{2}-6xy+9y^{2}+7x-21y$ $= (x-3y)^{2}+7(x-3y)$ $= (x-3y)(x-3y+7)$ (2) (a) The daily wage of Ada =480(1+20%) $= 576 (2) (b) Let \$x\$ be the daily wage of Christine. x(1-20%) = 480 $x = \frac{480}{1-20\%}$ $x = 600$ \therefore Christine has the highest daily wage. (2) Let x and (x + 24) be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54 (4)		$=\frac{1}{m^{12}}$		
m^{12} (3) $\frac{3a+b}{8} = b-1$ $3a+b=8b-8$ $3a=7b-8$ $a = \frac{7b-8}{3}$ (3) (a) $x^2 - 6xy + 9y^2$ $= (x-3y)^2$ (1) (b) $x^2 - 6xy + 9y^2 + 7x - 21y$ $= (x-3y)^2 + 7(x-21y)$ $= (x-3y)^2 + 7(x-3y)$ $= (x-3y)(x-3y+7)$ (2) (a) The daily wage of Ada = 480(1+20%) $= 576 (2) (b) Let \$x\$ be the daily wage of Christine. x(1-20%) = 480 $x = \frac{480}{1-20\%}$ $x = 600$ \therefore Christine has the highest daily wage. (2) Let x and (x + 24) be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54 (4)		$=\frac{n^5}{12}$	[2]	
$\frac{3a+b}{8} = b-1$ $3a+b=8(b-1)$ $3a+b=8b-8$ $a = \frac{7b-8}{3}$ (3) (a) $x^2 - 6xy + 9y^2$ $= (x-3y)^2$ (b) $x^2 - 6xy + 9y^2 + 7x - 21y$ $= (x-3y)^2 + 7x - 21y$ $= (x-3y)^2 + 7(x-3y)$ $= (x-3y)(x-3y+7)$ (c) (a) The daily wage of Ada $= 480(1+20\%)$ $= 576 (c) (c) (b) Let \$x\$ be the daily wage of Christine. $x(1-20\%) = 480$ $x = \frac{480}{1-20\%}$ $x = 600$ \therefore Christine has the highest daily wage. (c) (c) Let \$x\$ and \$(x+24)\$ be the number of male and female guards respectively. $x + (x+24) = 132$ $2x = 108$ $x = 54$ (c)		<i>m</i> ¹²	[3]	
$3a + b = 8(b - 1)$ $3a + b = 8b - 8$ $3a = 7b - 8$ $a = \frac{7b - 8}{3}$ (3) (a) $x^2 - 6xy + 9y^2$ $= (x - 3y)^2$ (b) $x^2 - 6xy + 9y^2 + 7x - 21y$ $= (x - 3y)^2 + 7x - 21y$ $= (x - 3y)^2 + 7(x - 3y)$ $= (x - 3y)(x - 3y + 7)$ (c) (a) The daily wage of Ada $= 480(1 + 20\%)$ $= \$576$ (c) (b) Let \$x\$ be the daily wage of Christine. $x(1 - 20\%) = 480$ $x = \frac{480}{1 - 20\%}$ $x = 600$ \therefore Christine has the highest daily wage. (c)	2.	$\frac{3a+b}{8} = b-1$		
$3a + b = 8b - 8$ $3a = 7b - 8$ $a = \frac{7b - 8}{3}$ (3) (a) $x^2 - 6xy + 9y^2$ $= (x - 3y)^2$ (b) $x^2 - 6xy + 9y^2 + 7x - 21y$ $= (x - 3y)^2 + 7x - 21y$ $= (x - 3y)^2 + 7x - 21y$ $= (x - 3y)^2 + 7(x - 3y)$ $= (x - 3y)(x - 3y + 7)$ (c) (d) The daily wage of Ada $= 480(1 + 20\%)$ $= \$576$ (c) (b) Let \$x be the daily wage of Christine. x(1 - 20%) = 480 $x = \frac{480}{1 - 20\%}$ $x = 600$ (c) Christine has the highest daily wage. (c) (c) Let x and $(x + 24)$ be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54 (c)		3a+b=8(b-1)		
$3a = 7b - 8$ $a = \frac{7b - 8}{3}$ [3] (a) $x^2 - 6xy + 9y^2$ $= (x - 3y)^2$ (b) $x^2 - 6xy + 9y^2 + 7x - 21y$ $= (x - 3y)^2 + 7x - 21y$ $= (x - 3y)^2 + 7(x - 3y)$ $= (x - 3y)(x - 3y + 7)$ (c) (a) The daily wage of Ada $= 480(1 + 20\%)$ $= \$576$ (c) (b) Let \$x\$ be the daily wage of Christine. $x(1 - 20\%) = 480$ $x = \frac{480}{1 - 20\%}$ $x = 600$ (c) Christine has the highest daily wage. (c) (c) Let \$x\$ and (x + 24) be the number of male and female guards respectively. $x + (x + 24) = 132$ $2x = 108$ $x = 54$ (c)		3a+b=8b-8		
$a = \frac{7b-8}{3}$ [3] (a) $x^2 - 6xy + 9y^2$ $= (x - 3y)^2$ [1] (b) $x^2 - 6xy + 9y^2 + 7x - 21y$ $= (x - 3y)^2 + 7x - 21y$ $= (x - 3y)^2 + 7(x - 3y)$ = (x - 3y)(x - 3y + 7) [2] (a) The daily wage of Ada = 480(1 + 20%) = \$576 [2] (b) Let \$x\$ be the daily wage of Christine. x(1 - 20%) = 480 $x = \frac{480}{1 - 20\%}$ x = 600 \therefore Christine has the highest daily wage. [2] (c) Let x and $(x + 24)$ be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54		3a = 7b - 8		
(a) $x^2 - 6xy + 9y^2$ $= (x - 3y)^2$ [1] (b) $x^2 - 6xy + 9y^2 + 7x - 21y$ $= (x - 3y)^2 + 7x - 21y$ $= (x - 3y)^2 + 7(x - 3y)$ = (x - 3y)(x - 3y + 7) [2] (a) The daily wage of Ada = 480(1 + 20%) = \$576 [2] (b) Let \$x\$ be the daily wage of Christine. x(1 - 20%) = 480 $x = \frac{480}{1 - 20\%}$ x = 600 ∴ Christine has the highest daily wage. [2] Let x and (x + 24) be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54 ∴ The number of male guards in the exhibition centre is 54		$a=\frac{7b-8}{3}$	[3]	
(b) $x = (x - 3y)^2$ [1] (b) $x^2 - 6xy + 9y^2 + 7x - 21y$ $= (x - 3y)^2 + 7(x - 21y)$ = (x - 3y)(x - 3y + 7) [2] (a) The daily wage of Ada = 480(1 + 20%) = \$576 [2] (b) Let \$x be the daily wage of Christine. x(1 - 20%) = 480 $x = \frac{480}{1 - 20\%}$ x = 600 \therefore Christine has the highest daily wage. [2] Let x and $(x + 24)$ be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54	3.	(a) $x^2 - 6xy + 9y^2$		
(b) $x^2 - 6xy + 9y^2 + 7x - 21y$ $= (x - 3y)^2 + 7x - 21y$ $= (x - 3y)^2 + 7(x - 3y)$ = (x - 3y)(x - 3y + 7) [2] (a) The daily wage of Ada = 480(1 + 20%) = \$576 [2] (b) Let \$x be the daily wage of Christine. x(1 - 20%) = 480 $x = \frac{480}{1 - 20\%}$ x = 600 \therefore Christine has the highest daily wage. [2] Let x and $(x + 24)$ be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54	•	$= (x - 3y)^2$	[1]	
(b) $x = 0.0y + 3y + 7x - 21y$ $= (x - 3y)^2 + 7x - 21y$ $= (x - 3y)^2 + 7(x - 3y)$ = (x - 3y)(x - 3y + 7) [2] (a) The daily wage of Ada = 480(1 + 20%) = \$576 [2] (b) Let \$x\$ be the daily wage of Christine. x(1 - 20%) = 480 $x = \frac{480}{1 - 20\%}$ x = 600 \therefore Christine has the highest daily wage. [2] Let x and $(x + 24)$ be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54		(b) $x^2 = 6xy + 9y^2 + 7x = 21y$		
$= (x - 3y)^{2} + 7(x - 3y)$ $= (x - 3y)(x - 3y + 7)$ (2) (a) The daily wage of Ada = 480(1 + 20%) $= 576 (2) (b) Let \$x\$ be the daily wage of Christine. $x(1 - 20\%) = 480$ $x = \frac{480}{1 - 20\%}$ $x = 600$ \therefore Christine has the highest daily wage. (2) Let x and (x + 24) be the number of male and female guards respectively. $x + (x + 24) = 132$ $2x = 108$ $x = 54$ \therefore The number of male guards in the exhibition centre is 54		$(0) x = 0xy + 3y + 7x - 21y \\ = (x - 3y)^2 + 7x - 21y$		
= (x - 3y)(x - 3y + 7) [2] (a) The daily wage of Ada = 480(1 + 20%) $= 576 [2] (b) Let \$x be the daily wage of Christine. $x(1 - 20\%) = 480$ $x = \frac{480}{1 - 20\%}$ $x = 600$ \therefore Christine has the highest daily wage. [2] Let x and (x + 24) be the number of male and female guards respectively. $x + (x + 24) = 132$ $2x = 108$ $x = 54$ \therefore The number of male guards in the exhibition centre is 54		$= (x - 3y)^2 + 7(x - 3y)$		
(a) The daily wage of Ada = 480(1 + 20%) $= 576 (2) (b) Let \$x be the daily wage of Christine. $x(1 - 20\%) = 480$ $x = \frac{480}{1 - 20\%}$ $x = 600$ \therefore Christine has the highest daily wage. (2) Let x and (x + 24) be the number of male and female guards respectively. $x + (x + 24) = 132$ $2x = 108$ $x = 54$ \therefore The number of male quards in the exhibition centre is 54		= (x - 3y)(x - 3y + 7)	[2]	
= 480(1 + 20%) $= 576 [2] (b) Let \$x\$ be the daily wage of Christine. $x(1 - 20\%) = 480$ $x = \frac{480}{1 - 20\%}$ $x = 600$ \therefore Christine has the highest daily wage. [2] . Let x and (x + 24) be the number of male and female guards respectively. $x + (x + 24) = 132$ $2x = 108$ $x = 54$ \therefore The number of male guards in the exhibition centre is 54	— I.	(a) The daily wage of Ada		
= \$576 [2] (b) Let \$x be the daily wage of Christine. x(1-20%) = 480 $x = \frac{480}{1-20\%}$ x = 600 \therefore Christine has the highest daily wage. [2] . Let x and $(x + 24)$ be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54 \therefore The number of male guards in the exhibition centre is 54 [4]		= 480(1 + 20%)		
(b) Let \$x be the daily wage of Christine. $x(1-20\%) = 480$ $x = \frac{480}{1-20\%}$ $x = 600$ \therefore Christine has the highest daily wage. [2] . Let x and (x + 24) be the number of male and female guards respectively. $x + (x + 24) = 132$ $2x = 108$ $x = 54$ \therefore The number of male quards in the exhibition centre is 54 [41]		= \$576	[2]	
$x(1-20\%) = 480$ $x = \frac{480}{1-20\%}$ $x = 600$ $\therefore \text{ Christine has the highest daily wage.} [2]$ $\text{Let } x \text{ and } (x + 24) \text{ be the number of male and female guards respectively.}$ $x + (x + 24) = 132$ $2x = 108$ $x = 54$ $\therefore \text{ The number of male guards in the exhibition centre is 54}$		(b) Let x be the daily wage of Christine.		
$x = \frac{480}{1 - 20\%}$ $x = 600$ \therefore Christine has the highest daily wage. [2] . Let x and (x + 24) be the number of male and female guards respectively. $x + (x + 24) = 132$ $2x = 108$ $x = 54$ \therefore The number of male guards in the exhibition centre is 54		x(1-20%) = 480		
$1 - 20\%$ $x = 600$ $\therefore \text{ Christine has the highest daily wage.} [2]$ $\text{Let } x \text{ and } (x + 24) \text{ be the number of male and female guards respectively.}$ $x + (x + 24) = 132$ $2x = 108$ $x = 54$ $\therefore \text{ The number of male guards in the exhibition centre is 54}$		$x = \frac{480}{2}$		
x = 600 .: Christine has the highest daily wage. [2] . Let x and (x + 24) be the number of male and female guards respectively. $x + (x + 24) = 132$ $2x = 108$ $x = 54$: The number of male guards in the exhibition centre is 54 [4]		$\frac{1-20\%}{1-20\%}$		
. Consisting has the highest daily wage. [2] . Let x and $(x + 24)$ be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54 . The number of male guards in the exhibition centre is 54		x = 600		
 Let x and (x + 24) be the number of male and female guards respectively. x + (x + 24) = 132 2x = 108 x = 54 The number of male guards in the exhibition centre is 54 		Christine has the lighest daily wage.	[2]	
x + (x + 24) = 132 $2x = 108$ $x = 54$ The number of male guards in the exhibition centre is 54	5.	Let x and $(x + 24)$ be the number of male and female guards resp	ectively.	
2x = 108 x = 54 The number of male guards in the exhibition centre is 54 [4]		x + (x + 24) = 132		
$\lambda = JT$ The number of male guards in the exhibition centre is 54		2x = 108 $x = 54$		
		$\lambda = 34$ • The number of male quarks in the exhibition centre is 54	ГЛ	

6.	(a)	$\frac{4x+6}{7} > 2(x-3)$	
		4r + 6 > 14(r - 3)	
		10x < 48	
		24	
		$x < \frac{1}{5}$	
		Also,	
		$2x - 10 \le 0$	
		$x \leq 5$	
		\therefore The required solution is $\frac{x < \frac{24}{5}}{5}$	[3]
	(b)	4	[1]
7.	(a)	a	
		= 18.1 - 6.8	
		= 11.3	
		b	
		= 12.1 + 3.2	
		= 15.3	[2]
	(b)	Note that the longest time taken by the students to finish a 100m race after	
		the training is 15.2 s which is less than the upper quartile of the distribution of	
		the times taken before the training.	
		. The claim is agreed.	[2]
8.	(a)	$\Delta AED \sim \Delta BEC$	
		$\frac{AE}{E} = \frac{DE}{E}$	
		BE CE	
		$\frac{AE}{8} = \frac{15}{20}$	
		AE = 6 cm	[3]
	(b)	$AE^2 + BE^2$	
		$= 6^2 + 8^2$	
		$= 10^2$	[2]
		$=AB^2$	
		$\therefore AC \perp BD$	

9.	(a)	Let x cm be the length of AD .	
		$\frac{(6+x)(12)}{2}(10) = 1020$	
		x = 11	
		\therefore The length of <i>AD</i> is 11cm.	[2]
	(b)	CD	
		$=\sqrt{12^2 + (11 - 6)^2}$	
		= 13 cm	
		The total surface area of the prism ABCDEFGH	
		$= (12 + 11 + 13 + 6)(10) + \frac{(6 + 11)(12)}{2}(2)$	
		$= 624 \text{ cm}^2$	[3]
Sec	tion A	A(2)	[35]
10.	(a)	The mean	
		= 18	
		The median	
		= 16	[2]
	(b)	(i) The mean	
		= 18	[2]
		(ii) Let <i>a</i> and <i>b</i> be the numbers of hours recorded in the two other questionnaires.	
		$\frac{a+b+19+20}{a+b+19+20} = 18$	
		4 a + b = 33	
		If the two medians are the same, then we have $a \le 16$ and $b \le 16$.	
		$a + b \le 32 \ne 33$	
		\therefore It is not possible that the two medians are the same.	[3]
11.	(a)	Let $C = r + sA$, where r and s are non-zero constants.	
		$ \begin{array}{c} \cdot & \begin{cases} r+2s = 62 \\ r+6s = 74 \end{cases} \end{array} $	
		Solving, we have $r = 56$ and $s = 3$.	
		The required cost	
		= 56 + 3(13)	
		= \$95	[4]

	(b)	Since the volume of the larger can is 8 times that of the can described in (a), the				
		surface area of the larger can is 4 times that of the can described in (a).				
		The surface area of the larger can				
		= (1	13)(4)			
		$= 52 \text{ m}^2$				
		T	he required cost			
		= 5	6 + 3(52)			
		= \$2	212	[2]		
12.	(a)	T	he required volume			
		$=\frac{1}{3}$	π(48) ² (96)			
		= 7	3728π cm ³	[2]		
	(b)	(i)	The required volume			
			$=\frac{2}{-\pi(60)^3}$			
			$= 144000 = \text{cm}^3$	[2]		
			$= 144000\pi \mathrm{cm}^{-1}$	[4]		
		(ii)	Let h cm be the height of the frustum under the surface of the milk and r cm be the base radius of the circular cone above the surface of the milk			
			<i>h</i>			
			$-\sqrt{(02-402)}$			
			$=\sqrt{60^2 - 48^2}$			
			= 36			
			$\frac{r}{40} = \frac{96 - 36}{26}$			
			r = 30			
			The volume of the milk remaining in the vessel			
			$= 144000\pi - \left(73728\pi - \frac{1}{3}\pi(30)^2(96 - 36)\right)$			
			$= 88272\pi \mathrm{cm}^3$			
			$= 0.2773146667 \text{ m}^3$			
			$< 0.3 \text{ m}^3$			
			The claim is disagreed.	[3]		
13.	(a)	<mark>k(2</mark>)	$)^3 - 21(2)^2 + 24(2) - 4 = 0$			
			8k = 40	[0]		
			k = 5	[2]		

MATHCONCEPT education © copyright

DSE.Math.Core.2012.Paper.1_Suggested.Solution_4/9

(b) (i) The area of the rectangle
$$OPQR$$

 $= m(15m^2 - 63m + 72)$
 $= 15m^3 - 63m^2 + 72m$ [1]
(ii) Note that the area of the rectangle $OPQR$ is 12.
 $15m^2 - 63m^2 + 72m = 12$
 $5m^3 - 21m^2 + 24m - 4 = 0$
 $(m - 2)^2(5m - 1) = 0$
 $m = 2 \text{ or } m = \frac{1}{5}$
 \therefore There are only two different positions of Q such that the area of the rectangle $OPQR$ is 12.
 \therefore There are only two different positions of Q such that the area of the rectangle $OPQR$ is 12.
 \therefore There are no three different positions of Q such that the area of the rectangle $OPQR$ is 12.
 \therefore There are no three different positions of Q such that the area of the rectangle $OPQR$ is 12.
 \therefore There are no three different positions of Q such that the area of the rectangle $OPQR$ is 12.
 \therefore There are no three different positions of Q such that the area of the rectangle $OPQR$ is 12.
 \therefore There are no three different positions of Q such that the area of the rectangle $OPQR$ is 12.
 \therefore There are no three different positions of Q such that the area of the rectangle $OPQR$ is 12.
 \therefore There are only two different positions of Q such that the area of the rectangle $OPQR$ is 12.
 (i) Note that the y-intercept of Γ is -2 .
 m_L
 $= \frac{-1 - 0}{0 - 3}$
 $= \frac{1}{3}$
The equation of Γ is $y + 2 = \frac{1}{3}(x - 0)$
 $x - 3y - 6 = 0$ [4]
(b) (i) Note that $Q(6, 0)$.
Since $6 - 3(0) - 6 = 0$, Γ passes through Q . [2]
(ii) Note that both QH and QK are radii of the circle.
Also note that both the heights of ΔAQH and ΔBQK are the distance between L and Γ .
 \therefore area of ΔAQH = area of ΔBQK .
 \therefore The required ratio is 1:1. [2]

Section B				
15.	(a)	The standard deviation = $10(1 + 20\%)$ = 12 marks	[1]	
	(b)	Let x be the test score and m be the mean of the test scores before the score adjustment.		
		The standard score before the score adjustment = $\frac{x - m}{10}$		
		The standard score after the score adjustment = $\frac{(x(1+20\%)+5) - (m(1+20\%)+5)}{12}$		
		$=\frac{1.2(x-m)}{12}$ $=\frac{x-m}{10}$		
		\therefore There is no change in the standard score of each student due to the score adjustment.	[2]	
16.	(a)	The required probability $= \frac{C_4^8 (C_1^2)^4}{C_4^{16}}$ $= \frac{8}{13}$	[2]	
	(b)	The required probability = $1 - \frac{8}{13}$		
		$=\frac{1}{13}$	[2]	
17.	(a)	Note that the radius of C is 10. \therefore The equation of C is $(x - 6)^2 + (y - 10)^2 = 10^2$	[2]	
	(b)	The equation of <i>L</i> is $y = -x + k$. Putting $y = -x + k$ in $x^2 + y^2 - 12x - 20y + 36 = 0$, we have $x^2 + (-x + k)^2 - 12x - 20(-x + k) + 36 = 0$ $2x^2 + (8 - 2k)x + (k^2 - 20k + 36) = 0$.		

The *x*-coordinate of the mid-point of AB

$$=rac{rac{-(8-2k)}{2}}{rac{2}{2}}$$

 $=rac{k-4}{2}$

The y-coordinate of the mid-point of AB

$$= -\frac{k-4}{2} + k$$
$$= \frac{k+4}{2}$$

 \therefore The required coordinates are $\left(\frac{k-4}{2}, \frac{k+4}{2}\right)$.

[5]

[2]

18. (a) By sine formula, we have

 $\frac{AP}{\sin \angle PBA} = \frac{AB}{\sin \angle APB}$ $\frac{AP}{\sin 60^\circ} = \frac{20}{\sin(180^\circ - 60^\circ - 72^\circ)}$ AP = 23.30704256 cmAP = 23.3 cm∴ The length of AP is 23.3 cm.

(b) (i) Let S be the foot of the perpendicular from P to AD.

PS = AP sin ∠PAD = 23.30704256 sin 72° = 22.1663147 cm AS = AP cos ∠PAD = 23.30704256 cos 72° = 7.202272239 cm By sine formula, we have $\frac{PB}{\sin ∠PAB} = \frac{AB}{\sin ∠APB}$ $\frac{PB}{\sin ∠PAB} = \frac{20}{\sin(180^\circ - 60^\circ - 72^\circ)}$

$$PB = 25.59545552 \text{ cm}$$

			Let T be the foot of the perpendicular from P to BC .	
			$PT^2 = PB^2 - AS^2$	
			$PT^2 = (25.59545552)^2 - (7.202272239)^2$	
			PT = 24.56124219 cm	
			Note that $\alpha = \angle PTS$	
			By cosine formula, we have	
			$\cos \alpha = \frac{PT^2 + ST^2 - PS^2}{2(PT)(ST)}$	
			$\cos \alpha = \frac{(2456124219)^2 + 20^2 - (22.1663147)^2}{2(2456124219)(20)}$	
			$\alpha = 58.59703733^{\circ}$	
			$\alpha = 58.6^{\circ}$	[4]
		(***)		[-]
		(ii)	Let X be the projection of P on the base ABCD.	
			Then, we have $\beta = \angle PBX$	
			Note that $PB > PT$.	
			$\sin \alpha$	
			$=\frac{PA}{PT}$	
			PX	
			$> \overline{PB}$	
			$= \sin \angle PBX$	
			$=\sin\beta$	
			Since α and β are acute angles, α is greater than β .	[2]
19.	(a)	(i)	Note that $ab^2 = 254100$ and $ab^4 = 307461$	
			So, we have $b^2 = \frac{307461}{254100}$	
			Solving, we have $b = 1.1$ and $a = 210000$.	
			The required weight	
			$=(210000)(1.1^{(2)(4)})$	
			= 450153.6501 tonnes	[4]
		(ii)	The total weight of the goods	
		、 /	$=ab^2 + ab^4 + \dots + ab^{2n}$	
			$ab^2(b^{2n}-1)$	
			$=\frac{1}{b^2-1}$	

