1. $\frac{m^{-12} n^{8}}{n^{3}}$

$$
\begin{aligned}
& =\frac{n^{8-3}}{m^{12}} \\
& =\frac{\boldsymbol{n}^{5}}{\boldsymbol{m}^{\mathbf{1 2}}}
\end{aligned}
$$

2. $\frac{3 a+b}{8}=b-1$
$3 a+b=8(b-1)$
$3 a+b=8 b-8$

$$
\begin{aligned}
3 a & =7 b-8 \\
a & =\frac{7 b-8}{3}
\end{aligned}
$$

3. (a) $x^{2}-6 x y+9 y^{2}$

$$
\begin{equation*}
=(x-3 y)^{2} \tag{1}
\end{equation*}
$$

(b) $x^{2}-6 x y+9 y^{2}+7 x-21 y$

$$
\begin{aligned}
& =(x-3 y)^{2}+7 x-21 y \\
& =(x-3 y)^{2}+7(x-3 y) \\
& =(x-3 y)(x-3 y+7)
\end{aligned}
$$

4. (a) The daily wage of Ada

$$
\begin{align*}
& =480(1+20 \%) \\
& =\$ 576 \tag{2}
\end{align*}
$$

(b) Let $\$ x$ be the daily wage of Christine.

$$
\begin{aligned}
x(1-20 \%) & =480 \\
x & =\frac{480}{1-20 \%} \\
x & =600
\end{aligned}
$$

\therefore Christine has the highest daily wage.
5. Let x and $(x+24)$ be the number of male and female guards respectively.
$x+(x+24)=132$

$$
\begin{aligned}
2 x & =108 \\
x & =54
\end{aligned}
$$

\therefore The number of male guards in the exhibition centre is 54.
6. (a) $\frac{4 x+6}{7}>2(x-3)$

$$
4 x+6>14(x-3)
$$

$$
10 x<48
$$

$$
x<\frac{24}{5}
$$

Also,
$2 x-10 \leq 0$

$$
x \leq 5
$$

\therefore The required solution is $x<\frac{24}{5}$
(b) 4
7. (a) a
$=18.1-6.8$
$=11.3$
b
$=12.1+3.2$
$=15.3$
(b) Note that the longest time taken by the students to finish a 100 m race after the training is 15.2 s which is less than the upper quartile of the distribution of the times taken before the training.
\therefore The claim is agreed.
8. (a) $\triangle A E D \sim \triangle B E C$
$\frac{A E}{B E}=\frac{D E}{C E}$
$\frac{A E}{8}=\frac{15}{20}$
$A E=6 \mathrm{~cm}$
(b) $A E^{2}+B E^{2}$
$=6^{2}+8^{2}$
$=10^{2}$
$=A B^{2}$
$\therefore A C \perp B D$

HKDSE Mathematics 2012 Core Paper 1-Suggested Solution

9. (a) Let $x \mathrm{~cm}$ be the length of $A D$.

$$
\begin{aligned}
\frac{(6+x)(12)}{2}(10) & =1020 \\
x & =11
\end{aligned}
$$

\therefore The length of $A D$ is 11 cm .
(b) $\quad C D$
$=\sqrt{12^{2}+(11-6)^{2}}$
$=13 \mathrm{~cm}$
The total surface area of the prism $A B C D E F G H$
$=(12+11+13+6)(10)+\frac{(6+11)(12)}{2}(2)$
$=624 \mathrm{~cm}^{2}$
Section A(2)
10. (a) The mean
$=18$
The median
$=16$

> [2]
(b) (i) The mean

$$
\begin{equation*}
=18 \tag{2}
\end{equation*}
$$

(ii) Let a and b be the numbers of hours recorded in the two other questionnaires.

$$
\begin{array}{r}
\frac{a+b+19+20}{4}=18 \\
a+b=33
\end{array}
$$

If the two medians are the same, then we have $a \leq 16$ and $b \leq 16$. $a+b \leq 32 \neq 33$
\therefore It is not possible that the two medians are the same.
11. (a) Let $C=r+s A$, where r and s are non-zero constants.
$\therefore\left\{\begin{array}{l}r+2 s=62 \\ r+6 s=74\end{array}\right.$
Solving, we have $\boldsymbol{r}=\mathbf{5 6}$ and $\boldsymbol{s}=\mathbf{3}$.
The required cost
$=56+3(13)$
$=\$ 95$
(b) Since the volume of the larger can is 8 times that of the can described in (a), the surface area of the larger can is 4 times that of the can described in (a).

The surface area of the larger can
$=(13)(4)$
$=52 \mathrm{~m}^{2}$
The required cost
$=56+3(52)$
$=\$ 212$
12. (a) The required volume
$=\frac{1}{3} \pi(48)^{2}(96)$
$=73728 \pi \mathrm{~cm}^{3}$
(b) (i) The required volume
$=\frac{2}{3} \pi(60)^{3}$
$=144000 \pi \mathrm{~cm}^{3}$
(ii) Let $h \mathrm{~cm}$ be the height of the frustum under the surface of the milk and $r \mathrm{~cm}$ be the base radius of the circular cone above the surface of the milk.

$$
\begin{aligned}
& h \\
&= \sqrt{60^{2}-48^{2}} \\
&= 36 \\
& \frac{r}{48}=\frac{96-36}{96} \\
& r=30 \\
& \text { The volume of the milk remaining in the vessel } \\
&= 144000 \pi-\left(73728 \pi-\frac{1}{3} \pi(30)^{2}(96-36)\right) \\
&= 88272 \pi \mathrm{~cm}^{3} \\
&= 0.2773146667 \mathrm{~m}^{3} \\
&< 0.3 \mathrm{~m}^{3} \\
& \therefore \text { The claim is disagreed. }
\end{aligned}
$$

13. (a) $k(2)^{3}-21(2)^{2}+24(2)-4=0$

$$
\begin{align*}
8 k & =40 \\
\boldsymbol{k} & =\mathbf{5} \tag{2}
\end{align*}
$$

(b) (i) The area of the rectangle $O P Q R$

$$
\begin{align*}
& =\boldsymbol{m}\left(\mathbf{1 5} \boldsymbol{m}^{2}-\mathbf{6 3} \boldsymbol{m}+\mathbf{7 2}\right) \\
& =15 m^{3}-63 m^{2}+72 m \tag{1}
\end{align*}
$$

(ii) Note that the area of the rectangle $O P Q R$ is 12 .

$$
\begin{aligned}
& 15 m^{3}-63 m^{2}+72 m=12 \\
& 5 m^{3}-21 m^{2}+24 m-4=0 \\
&(\boldsymbol{m}-\mathbf{2})\left(\mathbf{5} \boldsymbol{m}^{2}-\mathbf{1 1} \boldsymbol{m}+\mathbf{2}\right)=\mathbf{0} \\
&(m-2)^{2}(5 m-1)=0 \\
& m=2 \text { or } m=\frac{1}{5}
\end{aligned}
$$

\therefore There are only two different positions of Q such that the area of the rectangle $O P Q R$ is 12.
\therefore There are no three different positions of Q such that the area of the rectangle $O P Q R$ is 12 .
14. (a) (i) $\quad \Gamma / / L$.
(ii) Note that the \boldsymbol{y}-intercept of $\boldsymbol{\Gamma}$ is $\mathbf{- 2}$.
$\begin{aligned} & m_{L} \\ = & \frac{-1-0}{0-3} \\ = & \frac{\mathbf{1}}{\mathbf{3}}\end{aligned}$
The equation of Γ is
$y+2=\frac{1}{3}(x-0)$
$x-3 y-6=0$
(b) (i) Note that $Q(6,0)$.

Since $6-3(0)-6=0, \Gamma$ passes through Q.
(ii) Note that both $Q H$ and $Q K$ are radii of the circle.

Also note that both the heights of $\triangle A Q H$ and $\triangle B Q K$ are the distance between L and Γ.
\therefore area of $\triangle A Q H=$ area of $\triangle B Q K$.
\therefore The required ratio is $1: 1$.

HKDSE Mathematics 2012 Core Paper 1-Suggested Solution

Section B

15. (a) The standard deviation
$=10(1+20 \%)$
$=12$ marks
(b) Let x be the test score and m be the mean of the test scores before the
score adjustment.
The standard score before the score adjustment
$=\frac{x-m}{10}$
The standard score after the score adjustment
$=\frac{(x(1+20 \%)+5)-(m(1+20 \%)+5)}{12}$
$=\frac{1.2(x-m)}{12}$
$=\frac{x-m}{10}$
\therefore There is no change in the standard score of each student due to the score adjustment.
16. (a) The required probability
$=\frac{C_{4}^{8}\left(C_{1}^{2}\right)^{4}}{C_{4}^{16}}$
$=\frac{8}{13}$
(b) The required probability
$=1-\frac{8}{13}$
$=\frac{5}{13}$
17. (a) Note that the radius of C is 10 .
\therefore The equation of C is $(x-6)^{2}+(y-10)^{2}=10^{2}$
(b) The equation of L is $y=-x+k$.

Putting $y=-x+k$ in $x^{2}+y^{2}-12 x-20 y+36=0$, we have
$x^{2}+(-x+k)^{2}-12 x-20(-x+k)+36=0$
$2 x^{2}+(8-2 k) x+\left(k^{2}-20 k+36\right)=0$.

HKDSE Mathematics 2012 Core Paper 1-Suggested Solution

The x-coordinate of the mid-point of AB
$=\frac{\frac{-(8-2 k)}{2}}{2}$
$=\frac{k-4}{2}$
The y-coordinate of the mid-point of AB
$=-\frac{k-4}{2}+k$
$=\frac{k+4}{2}$
\therefore The required coordinates are $\left(\frac{k-4}{2}, \frac{k+4}{2}\right)$.
18. (a) By sine formula, we have

$$
\begin{aligned}
\frac{A P}{\sin \angle P B A} & =\frac{A B}{\sin \angle A P B} \\
\frac{A P}{\sin 60^{\circ}} & =\frac{20}{\sin \left(180^{\circ}-60^{\circ}-72^{\circ}\right)} \\
A P & =23.30704256 \mathrm{~cm} \\
\boldsymbol{A P} & =\mathbf{2 3 . 3} \mathbf{~ c m}
\end{aligned}
$$

\therefore The length of $A P$ is 23.3 cm .
(b) (i) Let S be the foot of the perpendicular from P to $A D$.

$$
\begin{aligned}
& P S \\
= & A P \sin \angle P A D \\
= & 23.30704256 \sin 72^{\circ} \\
= & 22.1663147 \mathrm{~cm} \\
& A S \\
= & A P \cos \angle P A D \\
= & 23.30704256 \cos 72^{\circ} \\
= & 7.202272239 \mathrm{~cm}
\end{aligned}
$$

By sine formula, we have

$$
\begin{aligned}
\frac{P B}{\sin \angle P A B} & =\frac{A B}{\sin \angle A P B} \\
\frac{P B}{\sin 72^{\circ}} & =\frac{20}{\sin \left(180^{\circ}-60^{\circ}-72^{\circ}\right)} \\
P B & =25.59545552 \mathrm{~cm}
\end{aligned}
$$

HKDSE Mathematics 2012 Core Paper 1-Suggested Solution

Let T be the foot of the perpendicular from P to $B C$.
$P T^{2}=P B^{2}-A S^{2}$
$P T^{2}=(25.59545552)^{2}-(7.202272239)^{2}$
$P T=24.56124219 \mathrm{~cm}$
Note that $\alpha=\angle P T S$
By cosine formula, we have

$$
\begin{aligned}
\cos \alpha & =\frac{P T^{2}+S T^{2}-P S^{2}}{2(P T)(S T)} \\
\cos \alpha & =\frac{(2456124219)^{2}+20^{2}-(22.1663147)^{2}}{2(2456124219)(20)} \\
\alpha & =58.59703733^{\circ} \\
\boldsymbol{\alpha} & =\mathbf{5 8 . 6}^{\circ}
\end{aligned}
$$

(ii) Let X be the projection of P on the base $A B C D$.

Then, we have $\beta=\angle P B X$
Note that $P B>P T$.
$\sin \alpha$
$=\frac{P X}{P T}$
$>\frac{P X}{P B}$
$=\sin \angle P B X$
$=\sin \beta$
Since α and β are acute angles, α is greater than β.
19. (a) (i) Note that $a b^{2}=254100$ and $a b^{4}=307461$

So, we have $b^{2}=\frac{307461}{254100}$
Solving, we have $\boldsymbol{b}=\mathbf{1} .1$ and $\boldsymbol{a}=\mathbf{2 1 0 0 0 0}$.
The required weight
$=(210000)\left(1.1^{(2)(4)}\right)$
$=450153.6501$ tonnes
(ii) The total weight of the goods
$=a b^{2}+a b^{4}+\cdots+a b^{2 n}$
$=\frac{a b^{2}\left(b^{2 n}-1\right)}{b^{2}-1}$
$=\frac{(210000)(1.1)^{2}\left((1.1)^{2 n}-1\right)}{1.1^{2}-1}$
$=\mathbf{1 2 1 0 0 0 0}\left((\mathbf{1 . 1})^{2 n}-\mathbf{1}\right)$ tonnes
(b) (i) Note that $A(4)=450153.65>420000=2 a$.

Also note that $(1.1)^{2 m}>(1.1)^{m}$ for any positive integer m.

$$
\begin{aligned}
& A(m+4) \\
= & (1.1)^{2 m} A(4) \\
> & (1.1)^{2 m}(2 a) \\
> & (1.1)^{m}(2 a) \\
= & B(m) \\
\therefore & \text { The claim is agreed. }
\end{aligned}
$$

(ii) Let n be the number of years elapsed since the start of the operation of X.

The total weight of the goods handled by Y
$=2 a b+2 a b^{2}+\cdots+2 a b^{n-4}$
$=\left(\frac{2 a b\left(b^{n-4}-1\right)}{b-1}\right)$ tonnes, where $n>4$
$1210000\left((1.1)^{2 n}-1\right)+\frac{420000(1.1)\left((1.1)^{n-4}-1\right)}{1.1-1}>20000000$
$121\left(1.1^{2 n}\right)+462\left(1.1^{n-4}\right)-2583>0$
$121\left(1.1^{4}\right)\left(1.1^{n}\right)^{2}+462\left(1.1^{n}\right)-2583\left(1.1^{4}\right)>0$
$1.1^{n}>3.496831134$ or $1.1^{n}<-6.10470069$ (rejected)
$n \log 1.1>\log 3.496831134$
$n>13.13455888$
Note that n is an integer.
\therefore The new facilities should be installed in the 14th year since the start of the operation of X.

